Description: For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomel | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg | ⊢ ( 𝐴 ∈ On → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
| 3 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 4 | domtriord | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) | |
| 5 | 2 3 4 | 3imtr3d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ≺ 𝐵 ) ) |
| 6 | 5 | con4d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵 ) ) |