Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomen1 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≺ 𝐶 ↔ 𝐵 ≺ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 2 | ensdomtr | ⊢ ( ( 𝐵 ≈ 𝐴 ∧ 𝐴 ≺ 𝐶 ) → 𝐵 ≺ 𝐶 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ≺ 𝐶 ) → 𝐵 ≺ 𝐶 ) |
| 4 | ensdomtr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) | |
| 5 | 3 4 | impbida | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≺ 𝐶 ↔ 𝐵 ≺ 𝐶 ) ) |