Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of Suppes p. 98. (Contributed by NM, 26-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomentr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom | ⊢ ( 𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶 ) | |
2 | sdomdomtr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐶 ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≺ 𝐶 ) |