Metamath Proof Explorer


Theorem sdomentr

Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of Suppes p. 98. (Contributed by NM, 26-Oct-2003)

Ref Expression
Assertion sdomentr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 endom ( 𝐵𝐶𝐵𝐶 )
2 sdomdomtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 1 2 sylan2 ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )