Description: Transitivity of strict dominance and equinumerosity. Exercise 11 of Suppes p. 98. (Contributed by NM, 26-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomentr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom | ⊢ ( 𝐵 ≈ 𝐶 → 𝐵 ≼ 𝐶 ) | |
| 2 | sdomdomtr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐶 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶 ) → 𝐴 ≺ 𝐶 ) |