Description: Strict dominance is irreflexive. Theorem 21(i) of Suppes p. 97. (Contributed by NM, 4-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen | ⊢ ( 𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴 ) | |
2 | enrefg | ⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) | |
3 | 1 2 | nsyl3 | ⊢ ( 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴 ) |
4 | relsdom | ⊢ Rel ≺ | |
5 | 4 | brrelex1i | ⊢ ( 𝐴 ≺ 𝐴 → 𝐴 ∈ V ) |
6 | 5 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴 ) |
7 | 3 6 | pm2.61i | ⊢ ¬ 𝐴 ≺ 𝐴 |