Metamath Proof Explorer


Theorem sdomirr

Description: Strict dominance is irreflexive. Theorem 21(i) of Suppes p. 97. (Contributed by NM, 4-Jun-1998)

Ref Expression
Assertion sdomirr ¬ 𝐴𝐴

Proof

Step Hyp Ref Expression
1 sdomnen ( 𝐴𝐴 → ¬ 𝐴𝐴 )
2 enrefg ( 𝐴 ∈ V → 𝐴𝐴 )
3 1 2 nsyl3 ( 𝐴 ∈ V → ¬ 𝐴𝐴 )
4 relsdom Rel ≺
5 4 brrelex1i ( 𝐴𝐴𝐴 ∈ V )
6 5 con3i ( ¬ 𝐴 ∈ V → ¬ 𝐴𝐴 )
7 3 6 pm2.61i ¬ 𝐴𝐴