Description: Strict dominance is irreflexive. Theorem 21(i) of Suppes p. 97. (Contributed by NM, 4-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen | ⊢ ( 𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴 ) | |
| 2 | enrefg | ⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) | |
| 3 | 1 2 | nsyl3 | ⊢ ( 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴 ) |
| 4 | relsdom | ⊢ Rel ≺ | |
| 5 | 4 | brrelex1i | ⊢ ( 𝐴 ≺ 𝐴 → 𝐴 ∈ V ) |
| 6 | 5 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴 ) |
| 7 | 3 6 | pm2.61i | ⊢ ¬ 𝐴 ≺ 𝐴 |