Metamath Proof Explorer
Description: Strict dominance is asymmetric. Theorem 21(ii) of Suppes p. 97.
(Contributed by NM, 8-Jun-1998)
|
|
Ref |
Expression |
|
Assertion |
sdomnsym |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sdomnen |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) |
2 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) |
3 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) |
4 |
|
sbth |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
6 |
1 5
|
mtand |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |