Metamath Proof Explorer


Theorem sdomnsym

Description: Strict dominance is asymmetric. Theorem 21(ii) of Suppes p. 97. (Contributed by NM, 8-Jun-1998)

Ref Expression
Assertion sdomnsym ( 𝐴𝐵 → ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 sdomnen ( 𝐴𝐵 → ¬ 𝐴𝐵 )
2 sdomdom ( 𝐴𝐵𝐴𝐵 )
3 sdomdom ( 𝐵𝐴𝐵𝐴 )
4 sbth ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
5 2 3 4 syl2an ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
6 1 5 mtand ( 𝐴𝐵 → ¬ 𝐵𝐴 )