Metamath Proof Explorer


Theorem sdomsdomcard

Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion sdomsdomcard ( 𝐴𝐵𝐴 ≺ ( card ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex2i ( 𝐴𝐵𝐵 ∈ V )
3 numth3 ( 𝐵 ∈ V → 𝐵 ∈ dom card )
4 cardid2 ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 )
5 ensym ( ( card ‘ 𝐵 ) ≈ 𝐵𝐵 ≈ ( card ‘ 𝐵 ) )
6 2 3 4 5 4syl ( 𝐴𝐵𝐵 ≈ ( card ‘ 𝐵 ) )
7 sdomentr ( ( 𝐴𝐵𝐵 ≈ ( card ‘ 𝐵 ) ) → 𝐴 ≺ ( card ‘ 𝐵 ) )
8 6 7 mpdan ( 𝐴𝐵𝐴 ≺ ( card ‘ 𝐵 ) )
9 sdomsdomcardi ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴𝐵 )
10 8 9 impbii ( 𝐴𝐵𝐴 ≺ ( card ‘ 𝐵 ) )