Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomsdomcard | ⊢ ( 𝐴 ≺ 𝐵 ↔ 𝐴 ≺ ( card ‘ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relsdom | ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i | ⊢ ( 𝐴 ≺ 𝐵 → 𝐵 ∈ V ) | 
| 3 | numth3 | ⊢ ( 𝐵 ∈ V → 𝐵 ∈ dom card ) | |
| 4 | cardid2 | ⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 ) | |
| 5 | ensym | ⊢ ( ( card ‘ 𝐵 ) ≈ 𝐵 → 𝐵 ≈ ( card ‘ 𝐵 ) ) | |
| 6 | 2 3 4 5 | 4syl | ⊢ ( 𝐴 ≺ 𝐵 → 𝐵 ≈ ( card ‘ 𝐵 ) ) | 
| 7 | sdomentr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≈ ( card ‘ 𝐵 ) ) → 𝐴 ≺ ( card ‘ 𝐵 ) ) | |
| 8 | 6 7 | mpdan | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≺ ( card ‘ 𝐵 ) ) | 
| 9 | sdomsdomcardi | ⊢ ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 10 | 8 9 | impbii | ⊢ ( 𝐴 ≺ 𝐵 ↔ 𝐴 ≺ ( card ‘ 𝐵 ) ) |