Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sdomsdomcardi | ⊢ ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdom0 | ⊢ ¬ 𝐴 ≺ ∅ | |
2 | ndmfv | ⊢ ( ¬ 𝐵 ∈ dom card → ( card ‘ 𝐵 ) = ∅ ) | |
3 | 2 | breq2d | ⊢ ( ¬ 𝐵 ∈ dom card → ( 𝐴 ≺ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ ∅ ) ) |
4 | 1 3 | mtbiri | ⊢ ( ¬ 𝐵 ∈ dom card → ¬ 𝐴 ≺ ( card ‘ 𝐵 ) ) |
5 | 4 | con4i | ⊢ ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐵 ∈ dom card ) |
6 | cardid2 | ⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ≺ ( card ‘ 𝐵 ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
8 | sdomentr | ⊢ ( ( 𝐴 ≺ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
9 | 7 8 | mpdan | ⊢ ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴 ≺ 𝐵 ) |