Metamath Proof Explorer


Theorem sdomsdomcardi

Description: A set strictly dominates if its cardinal strictly dominates. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion sdomsdomcardi ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sdom0 ¬ 𝐴 ≺ ∅
2 ndmfv ( ¬ 𝐵 ∈ dom card → ( card ‘ 𝐵 ) = ∅ )
3 2 breq2d ( ¬ 𝐵 ∈ dom card → ( 𝐴 ≺ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ ∅ ) )
4 1 3 mtbiri ( ¬ 𝐵 ∈ dom card → ¬ 𝐴 ≺ ( card ‘ 𝐵 ) )
5 4 con4i ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐵 ∈ dom card )
6 cardid2 ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 )
7 5 6 syl ( 𝐴 ≺ ( card ‘ 𝐵 ) → ( card ‘ 𝐵 ) ≈ 𝐵 )
8 sdomentr ( ( 𝐴 ≺ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝐴𝐵 )
9 7 8 mpdan ( 𝐴 ≺ ( card ‘ 𝐵 ) → 𝐴𝐵 )