Description: Strict dominance is transitive. Theorem 21(iii) of Suppes p. 97. (Contributed by NM, 9-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomtr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | domsdomtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |