Metamath Proof Explorer


Theorem sdrgbas

Description: Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypothesis sdrgbas.b 𝑆 = ( 𝑅s 𝐴 )
Assertion sdrgbas ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 sdrgbas.b 𝑆 = ( 𝑅s 𝐴 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 sdrgss ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
4 1 2 ressbas2 ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
5 3 4 syl ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )