Metamath Proof Explorer


Theorem sdrgdvcl

Description: A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses sdrgdvcl.i / = ( /r𝑅 )
sdrgdvcl.0 0 = ( 0g𝑅 )
sdrgdvcl.a ( 𝜑𝐴 ∈ ( SubDRing ‘ 𝑅 ) )
sdrgdvcl.x ( 𝜑𝑋𝐴 )
sdrgdvcl.y ( 𝜑𝑌𝐴 )
sdrgdvcl.1 ( 𝜑𝑌0 )
Assertion sdrgdvcl ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 sdrgdvcl.i / = ( /r𝑅 )
2 sdrgdvcl.0 0 = ( 0g𝑅 )
3 sdrgdvcl.a ( 𝜑𝐴 ∈ ( SubDRing ‘ 𝑅 ) )
4 sdrgdvcl.x ( 𝜑𝑋𝐴 )
5 sdrgdvcl.y ( 𝜑𝑌𝐴 )
6 sdrgdvcl.1 ( 𝜑𝑌0 )
7 issdrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
8 3 7 sylib ( 𝜑 → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
9 8 simp3d ( 𝜑 → ( 𝑅s 𝐴 ) ∈ DivRing )
10 9 drngringd ( 𝜑 → ( 𝑅s 𝐴 ) ∈ Ring )
11 8 simp2d ( 𝜑𝐴 ∈ ( SubRing ‘ 𝑅 ) )
12 eqid ( 𝑅s 𝐴 ) = ( 𝑅s 𝐴 )
13 12 subrgbas ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅s 𝐴 ) ) )
14 11 13 syl ( 𝜑𝐴 = ( Base ‘ ( 𝑅s 𝐴 ) ) )
15 4 14 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
16 5 14 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
17 12 2 subrg0 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ ( 𝑅s 𝐴 ) ) )
18 11 17 syl ( 𝜑0 = ( 0g ‘ ( 𝑅s 𝐴 ) ) )
19 6 18 neeqtrd ( 𝜑𝑌 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) )
20 eqid ( Base ‘ ( 𝑅s 𝐴 ) ) = ( Base ‘ ( 𝑅s 𝐴 ) )
21 eqid ( Unit ‘ ( 𝑅s 𝐴 ) ) = ( Unit ‘ ( 𝑅s 𝐴 ) )
22 eqid ( 0g ‘ ( 𝑅s 𝐴 ) ) = ( 0g ‘ ( 𝑅s 𝐴 ) )
23 20 21 22 drngunit ( ( 𝑅s 𝐴 ) ∈ DivRing → ( 𝑌 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) ↔ ( 𝑌 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑌 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) ) ) )
24 23 biimpar ( ( ( 𝑅s 𝐴 ) ∈ DivRing ∧ ( 𝑌 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑌 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) ) ) → 𝑌 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) )
25 9 16 19 24 syl12anc ( 𝜑𝑌 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) )
26 eqid ( /r ‘ ( 𝑅s 𝐴 ) ) = ( /r ‘ ( 𝑅s 𝐴 ) )
27 20 21 26 dvrcl ( ( ( 𝑅s 𝐴 ) ∈ Ring ∧ 𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑌 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) ) → ( 𝑋 ( /r ‘ ( 𝑅s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
28 10 15 25 27 syl3anc ( 𝜑 → ( 𝑋 ( /r ‘ ( 𝑅s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
29 12 1 21 26 subrgdv ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑌 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ ( 𝑅s 𝐴 ) ) 𝑌 ) )
30 11 4 25 29 syl3anc ( 𝜑 → ( 𝑋 / 𝑌 ) = ( 𝑋 ( /r ‘ ( 𝑅s 𝐴 ) ) 𝑌 ) )
31 28 30 14 3eltr4d ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ 𝐴 )