Metamath Proof Explorer


Theorem sdrginvcl

Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses sdrginvcl.i 𝐼 = ( invr𝑅 )
sdrginvcl.0 0 = ( 0g𝑅 )
Assertion sdrginvcl ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( 𝐼𝑋 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 sdrginvcl.i 𝐼 = ( invr𝑅 )
2 sdrginvcl.0 0 = ( 0g𝑅 )
3 issdrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
4 3 biimpi ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
5 4 3ad2ant1 ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
6 5 simp3d ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( 𝑅s 𝐴 ) ∈ DivRing )
7 simp2 ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝑋𝐴 )
8 5 simp2d ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) )
9 eqid ( 𝑅s 𝐴 ) = ( 𝑅s 𝐴 )
10 9 subrgbas ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅s 𝐴 ) ) )
11 8 10 syl ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝐴 = ( Base ‘ ( 𝑅s 𝐴 ) ) )
12 7 11 eleqtrd ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
13 simp3 ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝑋0 )
14 9 2 subrg0 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ ( 𝑅s 𝐴 ) ) )
15 8 14 syl ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 0 = ( 0g ‘ ( 𝑅s 𝐴 ) ) )
16 13 15 neeqtrd ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) )
17 eqid ( Base ‘ ( 𝑅s 𝐴 ) ) = ( Base ‘ ( 𝑅s 𝐴 ) )
18 eqid ( 0g ‘ ( 𝑅s 𝐴 ) ) = ( 0g ‘ ( 𝑅s 𝐴 ) )
19 eqid ( invr ‘ ( 𝑅s 𝐴 ) ) = ( invr ‘ ( 𝑅s 𝐴 ) )
20 17 18 19 drnginvrcl ( ( ( 𝑅s 𝐴 ) ∈ DivRing ∧ 𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) ) → ( ( invr ‘ ( 𝑅s 𝐴 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
21 6 12 16 20 syl3anc ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( ( invr ‘ ( 𝑅s 𝐴 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) )
22 eqid ( Unit ‘ ( 𝑅s 𝐴 ) ) = ( Unit ‘ ( 𝑅s 𝐴 ) )
23 17 22 18 drngunit ( ( 𝑅s 𝐴 ) ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) ↔ ( 𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) ) ) )
24 23 biimpar ( ( ( 𝑅s 𝐴 ) ∈ DivRing ∧ ( 𝑋 ∈ ( Base ‘ ( 𝑅s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅s 𝐴 ) ) ) ) → 𝑋 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) )
25 6 12 16 24 syl12anc ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) )
26 9 1 22 19 subrginv ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ ( Unit ‘ ( 𝑅s 𝐴 ) ) ) → ( 𝐼𝑋 ) = ( ( invr ‘ ( 𝑅s 𝐴 ) ) ‘ 𝑋 ) )
27 8 25 26 syl2anc ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( 𝐼𝑋 ) = ( ( invr ‘ ( 𝑅s 𝐴 ) ) ‘ 𝑋 ) )
28 21 27 11 3eltr4d ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋𝐴𝑋0 ) → ( 𝐼𝑋 ) ∈ 𝐴 )