Step |
Hyp |
Ref |
Expression |
1 |
|
sdrginvcl.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
2 |
|
sdrginvcl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
issdrg |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) |
4 |
3
|
biimpi |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) |
6 |
5
|
simp3d |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) |
7 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐴 ) |
8 |
5
|
simp2d |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
10 |
9
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
12 |
7 11
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
13 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
14 |
9 2
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
15 |
8 14
|
syl |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
16 |
13 15
|
neeqtrd |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) |
19 |
|
eqid |
⊢ ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) = ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) |
20 |
17 18 19
|
drnginvrcl |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ DivRing ∧ 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
21 |
6 12 16 20
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
22 |
|
eqid |
⊢ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) |
23 |
17 22 18
|
drngunit |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ↔ ( 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) ) ) |
24 |
23
|
biimpar |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ DivRing ∧ ( 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( 𝑅 ↾s 𝐴 ) ) ) ) → 𝑋 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
25 |
6 12 16 24
|
syl12anc |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
26 |
9 1 22 19
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ ( Unit ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ 𝑋 ) ) |
27 |
8 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) = ( ( invr ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ 𝑋 ) ) |
28 |
21 27 11
|
3eltr4d |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐴 ) |