Metamath Proof Explorer


Theorem sdrgunit

Description: A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypotheses sdrgunit.s 𝑆 = ( 𝑅s 𝐴 )
sdrgunit.0 0 = ( 0g𝑅 )
sdrgunit.u 𝑈 = ( Unit ‘ 𝑆 )
Assertion sdrgunit ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑋𝑈 ↔ ( 𝑋𝐴𝑋0 ) ) )

Proof

Step Hyp Ref Expression
1 sdrgunit.s 𝑆 = ( 𝑅s 𝐴 )
2 sdrgunit.0 0 = ( 0g𝑅 )
3 sdrgunit.u 𝑈 = ( Unit ‘ 𝑆 )
4 1 sdrgdrng ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing )
5 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
6 eqid ( 0g𝑆 ) = ( 0g𝑆 )
7 5 3 6 drngunit ( 𝑆 ∈ DivRing → ( 𝑋𝑈 ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 ≠ ( 0g𝑆 ) ) ) )
8 4 7 syl ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑋𝑈 ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 ≠ ( 0g𝑆 ) ) ) )
9 1 sdrgbas ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
10 9 eleq2d ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑋𝐴𝑋 ∈ ( Base ‘ 𝑆 ) ) )
11 sdrgsubrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) )
12 1 2 subrg0 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g𝑆 ) )
13 11 12 syl ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 0 = ( 0g𝑆 ) )
14 13 neeq2d ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑋0𝑋 ≠ ( 0g𝑆 ) ) )
15 10 14 anbi12d ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( ( 𝑋𝐴𝑋0 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 ≠ ( 0g𝑆 ) ) ) )
16 8 15 bitr4d ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑋𝑈 ↔ ( 𝑋𝐴𝑋0 ) ) )