Step |
Hyp |
Ref |
Expression |
1 |
|
sectcan.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
sectcan.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
3 |
|
sectcan.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
sectcan.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
sectcan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
sectcan.1 |
⊢ ( 𝜑 → 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) |
7 |
|
sectcan.2 |
⊢ ( 𝜑 → 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
11 |
1 8 9 10 2 3 4 5
|
issect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
12 |
6 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
14 |
1 8 9 10 2 3 5 4
|
issect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ↔ ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
15 |
7 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
16 |
15
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
17 |
15
|
simp2d |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
18 |
1 8 9 3 4 5 4 13 16 5 17
|
catass |
⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) ) |
19 |
15
|
simp3d |
⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) |
21 |
12
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
23 |
18 20 22
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
24 |
1 8 10 3 4 9 5 13
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = 𝐺 ) |
25 |
1 8 10 3 4 9 5 17
|
catrid |
⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐻 ) |
26 |
23 24 25
|
3eqtr3d |
⊢ ( 𝜑 → 𝐺 = 𝐻 ) |