Metamath Proof Explorer


Theorem sectcan

Description: If G is a section of F and F is a section of H , then G = H . Proposition 3.10 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses sectcan.b 𝐵 = ( Base ‘ 𝐶 )
sectcan.s 𝑆 = ( Sect ‘ 𝐶 )
sectcan.c ( 𝜑𝐶 ∈ Cat )
sectcan.x ( 𝜑𝑋𝐵 )
sectcan.y ( 𝜑𝑌𝐵 )
sectcan.1 ( 𝜑𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 )
sectcan.2 ( 𝜑𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 )
Assertion sectcan ( 𝜑𝐺 = 𝐻 )

Proof

Step Hyp Ref Expression
1 sectcan.b 𝐵 = ( Base ‘ 𝐶 )
2 sectcan.s 𝑆 = ( Sect ‘ 𝐶 )
3 sectcan.c ( 𝜑𝐶 ∈ Cat )
4 sectcan.x ( 𝜑𝑋𝐵 )
5 sectcan.y ( 𝜑𝑌𝐵 )
6 sectcan.1 ( 𝜑𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 )
7 sectcan.2 ( 𝜑𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
10 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
11 1 8 9 10 2 3 4 5 issect ( 𝜑 → ( 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) )
12 6 11 mpbid ( 𝜑 → ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
13 12 simp1d ( 𝜑𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
14 1 8 9 10 2 3 5 4 issect ( 𝜑 → ( 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ↔ ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) )
15 7 14 mpbid ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) )
16 15 simp1d ( 𝜑𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) )
17 15 simp2d ( 𝜑𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
18 1 8 9 3 4 5 4 13 16 5 17 catass ( 𝜑 → ( ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) )
19 15 simp3d ( 𝜑 → ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) )
20 19 oveq1d ( 𝜑 → ( ( 𝐻 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) )
21 12 simp3d ( 𝜑 → ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
22 21 oveq2d ( 𝜑 → ( 𝐻 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) = ( 𝐻 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
23 18 20 22 3eqtr3d ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
24 1 8 10 3 4 9 5 13 catlid ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = 𝐺 )
25 1 8 10 3 4 9 5 17 catrid ( 𝜑 → ( 𝐻 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐻 )
26 23 24 25 3eqtr3d ( 𝜑𝐺 = 𝐻 )