| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sectepi.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							sectepi.e | 
							⊢ 𝐸  =  ( Epi ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							sectepi.s | 
							⊢ 𝑆  =  ( Sect ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							sectepi.c | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 5 | 
							
								
							 | 
							sectepi.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							sectepi.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							sectepi.1 | 
							⊢ ( 𝜑  →  𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( oppCat ‘ 𝐶 )  =  ( oppCat ‘ 𝐶 )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							oppcbas | 
							⊢ 𝐵  =  ( Base ‘ ( oppCat ‘ 𝐶 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) )  =  ( Mono ‘ ( oppCat ‘ 𝐶 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Sect ‘ ( oppCat ‘ 𝐶 ) )  =  ( Sect ‘ ( oppCat ‘ 𝐶 ) )  | 
						
						
							| 12 | 
							
								8
							 | 
							oppccat | 
							⊢ ( 𝐶  ∈  Cat  →  ( oppCat ‘ 𝐶 )  ∈  Cat )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							syl | 
							⊢ ( 𝜑  →  ( oppCat ‘ 𝐶 )  ∈  Cat )  | 
						
						
							| 14 | 
							
								1 8 4 5 6 3 11
							 | 
							oppcsect | 
							⊢ ( 𝜑  →  ( 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹  ↔  𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 )  | 
						
						
							| 16 | 
							
								9 10 11 13 5 6 15
							 | 
							sectmon | 
							⊢ ( 𝜑  →  𝐺  ∈  ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) )  | 
						
						
							| 17 | 
							
								8 4 10 2
							 | 
							oppcmon | 
							⊢ ( 𝜑  →  ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 )  =  ( 𝑌 𝐸 𝑋 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝐺  ∈  ( 𝑌 𝐸 𝑋 ) )  |