Step |
Hyp |
Ref |
Expression |
1 |
|
sectepi.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
sectepi.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
3 |
|
sectepi.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
4 |
|
sectepi.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
sectepi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
sectepi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
sectepi.1 |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
8 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
9 |
8 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
10 |
|
eqid |
⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) |
11 |
|
eqid |
⊢ ( Sect ‘ ( oppCat ‘ 𝐶 ) ) = ( Sect ‘ ( oppCat ‘ 𝐶 ) ) |
12 |
8
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
14 |
1 8 4 5 6 3 11
|
oppcsect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |
15 |
7 14
|
mpbird |
⊢ ( 𝜑 → 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ) |
16 |
9 10 11 13 5 6 15
|
sectmon |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
17 |
8 4 10 2
|
oppcmon |
⊢ ( 𝜑 → ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐸 𝑋 ) ) |
18 |
16 17
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐸 𝑋 ) ) |