Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
issect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
issect.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
issect.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
issect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
issect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
7 |
|
issect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
issect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
11 |
|
fvexd |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) ∈ V ) |
12 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
14 |
|
simpr |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
15 |
14
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
16 |
15
|
eleq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
17 |
14
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) |
19 |
16 18
|
anbi12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ↔ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) ) |
20 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
22 |
21 3
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
23 |
22
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) ) |
24 |
23
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) ) |
25 |
20
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
26 |
25 4
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = 1 ) |
27 |
26
|
fveq1d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
28 |
24 27
|
eqeq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) |
29 |
19 28
|
anbi12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
30 |
11 13 29
|
sbcied2 |
⊢ ( 𝑐 = 𝐶 → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
31 |
30
|
opabbidv |
⊢ ( 𝑐 = 𝐶 → { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) |
32 |
10 10 31
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
33 |
|
df-sect |
⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
34 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
35 |
34 34
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ∈ V |
36 |
32 33 35
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
37 |
6 36
|
syl |
⊢ ( 𝜑 → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
38 |
5 37
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |