| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
issect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
issect.o |
⊢ · = ( comp ‘ 𝐶 ) |
| 4 |
|
issect.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 5 |
|
issect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 6 |
|
issect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 7 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 8 |
7 1
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 9 |
|
fvexd |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) ∈ V ) |
| 10 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 11 |
10 2
|
eqtr4di |
⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 12 |
|
simpr |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
| 13 |
12
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 14 |
13
|
eleq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 15 |
12
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 16 |
15
|
eleq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ↔ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 20 |
19 3
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
| 21 |
20
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) ) |
| 22 |
21
|
oveqd |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) ) |
| 23 |
18
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = ( Id ‘ 𝐶 ) ) |
| 24 |
23 4
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( Id ‘ 𝑐 ) = 1 ) |
| 25 |
24
|
fveq1d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 26 |
22 25
|
eqeq12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) |
| 27 |
17 26
|
anbi12d |
⊢ ( ( 𝑐 = 𝐶 ∧ ℎ = 𝐻 ) → ( ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
| 28 |
9 11 27
|
sbcied2 |
⊢ ( 𝑐 = 𝐶 → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ) ) |
| 29 |
28
|
opabbidv |
⊢ ( 𝑐 = 𝐶 → { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) |
| 30 |
8 8 29
|
mpoeq123dv |
⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 31 |
|
df-sect |
⊢ Sect = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Hom ‘ 𝑐 ) / ℎ ] ( ( 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ℎ 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ) } ) ) |
| 32 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 33 |
32 32
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ∈ V |
| 34 |
30 31 33
|
fvmpt |
⊢ ( 𝐶 ∈ Cat → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 35 |
6 34
|
syl |
⊢ ( 𝜑 → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 36 |
5 35
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |