| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issect.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | issect.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | issect.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | issect.i | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 5 |  | issect.s | ⊢ 𝑆  =  ( Sect ‘ 𝐶 ) | 
						
							| 6 |  | issect.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 7 |  | issect.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | issect.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 | 1 2 3 4 5 6 7 7 | sectffval | ⊢ ( 𝜑  →  𝑆  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) } ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑥  =  𝑋 ) | 
						
							| 11 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑦  =  𝑌 ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 14 | 11 10 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑦 𝐻 𝑥 )  =  ( 𝑌 𝐻 𝑋 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑔  ∈  ( 𝑦 𝐻 𝑥 )  ↔  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ) ) | 
						
							| 16 | 13 15 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ↔  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) ) ) ) | 
						
							| 17 | 10 11 | opeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  〈 𝑥 ,  𝑦 〉  =  〈 𝑋 ,  𝑌 〉 ) | 
						
							| 18 | 17 10 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 )  =  ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) ) | 
						
							| 19 | 18 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 ) ) | 
						
							| 20 | 10 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  (  1  ‘ 𝑥 )  =  (  1  ‘ 𝑋 ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 )  ↔  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) ) | 
						
							| 22 | 16 21 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) )  ↔  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) ) ) | 
						
							| 23 | 22 | opabbidv | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ∧  𝑔  ∈  ( 𝑦 𝐻 𝑥 ) )  ∧  ( 𝑔 ( 〈 𝑥 ,  𝑦 〉  ·  𝑥 ) 𝑓 )  =  (  1  ‘ 𝑥 ) ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) } ) | 
						
							| 24 |  | ovex | ⊢ ( 𝑋 𝐻 𝑌 )  ∈  V | 
						
							| 25 |  | ovex | ⊢ ( 𝑌 𝐻 𝑋 )  ∈  V | 
						
							| 26 | 24 25 | xpex | ⊢ ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) )  ∈  V | 
						
							| 27 |  | opabssxp | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) }  ⊆  ( ( 𝑋 𝐻 𝑌 )  ×  ( 𝑌 𝐻 𝑋 ) ) | 
						
							| 28 | 26 27 | ssexi | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) }  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) }  ∈  V ) | 
						
							| 30 | 9 23 7 8 29 | ovmpod | ⊢ ( 𝜑  →  ( 𝑋 𝑆 𝑌 )  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  𝑔  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑌 〉  ·  𝑋 ) 𝑓 )  =  (  1  ‘ 𝑋 ) ) } ) |