| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invid.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
invid.i |
⊢ 𝐼 = ( Id ‘ 𝐶 ) |
| 3 |
|
invid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
invid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 7 |
1 5 2 3 4
|
catidcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 8 |
1 5 2 3 4 6 4 7
|
catlid |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 9 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 10 |
1 5 6 2 9 3 4 4 7 7
|
issect2 |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) ) |
| 11 |
8 10
|
mpbird |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼 ‘ 𝑋 ) ) |