Metamath Proof Explorer


Theorem sectid

Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b 𝐵 = ( Base ‘ 𝐶 )
invid.i 𝐼 = ( Id ‘ 𝐶 )
invid.c ( 𝜑𝐶 ∈ Cat )
invid.x ( 𝜑𝑋𝐵 )
Assertion sectid ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 invid.b 𝐵 = ( Base ‘ 𝐶 )
2 invid.i 𝐼 = ( Id ‘ 𝐶 )
3 invid.c ( 𝜑𝐶 ∈ Cat )
4 invid.x ( 𝜑𝑋𝐵 )
5 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
6 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
7 1 5 2 3 4 catidcl ( 𝜑 → ( 𝐼𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
8 1 5 2 3 4 6 4 7 catlid ( 𝜑 → ( ( 𝐼𝑋 ) ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )
9 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
10 1 5 6 2 9 3 4 4 7 7 issect2 ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ↔ ( ( 𝐼𝑋 ) ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) ) )
11 8 10 mpbird ( 𝜑 → ( 𝐼𝑋 ) ( 𝑋 ( Sect ‘ 𝐶 ) 𝑋 ) ( 𝐼𝑋 ) )