Metamath Proof Explorer


Theorem seeq1

Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion seeq1 ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqimss2 ( 𝑅 = 𝑆𝑆𝑅 )
2 sess1 ( 𝑆𝑅 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )
3 1 2 syl ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )
4 eqimss ( 𝑅 = 𝑆𝑅𝑆 )
5 sess1 ( 𝑅𝑆 → ( 𝑆 Se 𝐴𝑅 Se 𝐴 ) )
6 4 5 syl ( 𝑅 = 𝑆 → ( 𝑆 Se 𝐴𝑅 Se 𝐴 ) )
7 3 6 impbid ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )