Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | seeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | ⊢ ( 𝑅 = 𝑆 → 𝑆 ⊆ 𝑅 ) | |
2 | sess1 | ⊢ ( 𝑆 ⊆ 𝑅 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐴 ) ) |
4 | eqimss | ⊢ ( 𝑅 = 𝑆 → 𝑅 ⊆ 𝑆 ) | |
5 | sess1 | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑆 Se 𝐴 → 𝑅 Se 𝐴 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝑅 = 𝑆 → ( 𝑆 Se 𝐴 → 𝑅 Se 𝐴 ) ) |
7 | 3 6 | impbid | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) |