Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 | ⊢ ( 𝑅 = 𝑆 → 𝑆 ⊆ 𝑅 ) | |
| 2 | sess1 | ⊢ ( 𝑆 ⊆ 𝑅 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐴 ) ) |
| 4 | eqimss | ⊢ ( 𝑅 = 𝑆 → 𝑅 ⊆ 𝑆 ) | |
| 5 | sess1 | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑆 Se 𝐴 → 𝑅 Se 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 = 𝑆 → ( 𝑆 Se 𝐴 → 𝑅 Se 𝐴 ) ) |
| 7 | 3 6 | impbid | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴 ) ) |