Metamath Proof Explorer


Theorem seeq12d

Description: Equality deduction for the set-like predicate. (Contributed by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses seeq12d.1 ( 𝜑𝑅 = 𝑆 )
seeq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion seeq12d ( 𝜑 → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )

Proof

Step Hyp Ref Expression
1 seeq12d.1 ( 𝜑𝑅 = 𝑆 )
2 seeq12d.2 ( 𝜑𝐴 = 𝐵 )
3 seeq1 ( 𝑅 = 𝑆 → ( 𝑅 Se 𝐴𝑆 Se 𝐴 ) )
4 seeq2 ( 𝐴 = 𝐵 → ( 𝑆 Se 𝐴𝑆 Se 𝐵 ) )
5 3 4 sylan9bb ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝑅 Se 𝐴𝑆 Se 𝐵 ) )