Metamath Proof Explorer


Theorem seeq2

Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion seeq2 ( 𝐴 = 𝐵 → ( 𝑅 Se 𝐴𝑅 Se 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqimss2 ( 𝐴 = 𝐵𝐵𝐴 )
2 sess2 ( 𝐵𝐴 → ( 𝑅 Se 𝐴𝑅 Se 𝐵 ) )
3 1 2 syl ( 𝐴 = 𝐵 → ( 𝑅 Se 𝐴𝑅 Se 𝐵 ) )
4 eqimss ( 𝐴 = 𝐵𝐴𝐵 )
5 sess2 ( 𝐴𝐵 → ( 𝑅 Se 𝐵𝑅 Se 𝐴 ) )
6 4 5 syl ( 𝐴 = 𝐵 → ( 𝑅 Se 𝐵𝑅 Se 𝐴 ) )
7 3 6 impbid ( 𝐴 = 𝐵 → ( 𝑅 Se 𝐴𝑅 Se 𝐵 ) )