| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brinxp |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 2 |
1
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 3 |
2
|
rabbidva |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) ) |
| 5 |
4
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) |
| 6 |
|
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 7 |
|
df-se |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) |
| 8 |
5 6 7
|
3bitr4i |
⊢ ( 𝑅 Se 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ) |