Metamath Proof Explorer


Theorem seinxp

Description: Intersection of set-like relation with Cartesian product of its field. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion seinxp ( 𝑅 Se 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 )

Proof

Step Hyp Ref Expression
1 brinxp ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
2 1 ancoms ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
3 2 rabbidva ( 𝑥𝐴 → { 𝑦𝐴𝑦 𝑅 𝑥 } = { 𝑦𝐴𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } )
4 3 eleq1d ( 𝑥𝐴 → ( { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ↔ { 𝑦𝐴𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V ) )
5 4 ralbiia ( ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V )
6 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
7 df-se ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 } ∈ V )
8 5 6 7 3bitr4i ( 𝑅 Se 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Se 𝐴 )