| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑛  =  𝑑  →  ( Λ ‘ 𝑛 )  =  ( Λ ‘ 𝑑 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑛  =  𝑑  →  ( 𝑥  /  𝑛 )  =  ( 𝑥  /  𝑑 ) ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( 𝑛  =  𝑑  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  =  ( ψ ‘ ( 𝑥  /  𝑑 ) ) ) | 
						
							| 4 | 1 3 | oveq12d | ⊢ ( 𝑛  =  𝑑  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( ψ ‘ ( 𝑥  /  𝑑 ) ) ) ) | 
						
							| 5 | 4 | cbvsumv | ⊢ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 )  ·  ( ψ ‘ ( 𝑥  /  𝑑 ) ) ) | 
						
							| 6 |  | fzfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) )  ∈  Fin ) | 
						
							| 7 |  | elfznn | ⊢ ( 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑑  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 9 |  | vmacl | ⊢ ( 𝑑  ∈  ℕ  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑑 )  ∈  ℂ ) | 
						
							| 12 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 14 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 17 | 6 11 16 | fsummulc2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑑 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( Λ ‘ 𝑚 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ 𝑚 ) ) ) | 
						
							| 18 | 7 | nnrpd | ⊢ ( 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑑  ∈  ℝ+ ) | 
						
							| 19 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ℝ+ )  →  ( 𝑥  /  𝑑 )  ∈  ℝ+ ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑑 )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑑 )  ∈  ℝ ) | 
						
							| 22 |  | chpval | ⊢ ( ( 𝑥  /  𝑑 )  ∈  ℝ  →  ( ψ ‘ ( 𝑥  /  𝑑 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑑 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑑 )  ·  ( ψ ‘ ( 𝑥  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( Λ ‘ 𝑚 ) ) ) | 
						
							| 25 | 13 | nncnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 26 | 7 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ∈  ℂ ) | 
						
							| 28 | 26 | nnne0d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  𝑑  ≠  0 ) | 
						
							| 29 | 25 27 28 | divcan3d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( 𝑑  ·  𝑚 )  /  𝑑 )  =  𝑚 ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) )  =  ( Λ ‘ 𝑚 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ 𝑚 ) ) ) | 
						
							| 32 | 31 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ 𝑚 ) ) ) | 
						
							| 33 | 17 24 32 | 3eqtr4d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑑 )  ·  ( ψ ‘ ( 𝑥  /  𝑑 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) ) | 
						
							| 34 | 33 | sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑑 )  ·  ( ψ ‘ ( 𝑥  /  𝑑 ) ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) ) | 
						
							| 35 | 5 34 | eqtrid | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) ) | 
						
							| 36 |  | fvoveq1 | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( Λ ‘ ( 𝑛  /  𝑑 ) )  =  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  =  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) ) | 
						
							| 38 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 39 |  | ssrab2 | ⊢ { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ℕ | 
						
							| 40 |  | simprr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 41 | 39 40 | sselid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  ℕ ) | 
						
							| 42 | 41 | anassrs | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  𝑑  ∈  ℕ ) | 
						
							| 43 | 42 9 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ 𝑑 )  ∈  ℝ ) | 
						
							| 44 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 46 |  | dvdsdivcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑑 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 47 | 45 46 | sylan | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑑 )  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) | 
						
							| 48 | 39 47 | sselid | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( 𝑛  /  𝑑 )  ∈  ℕ ) | 
						
							| 49 |  | vmacl | ⊢ ( ( 𝑛  /  𝑑 )  ∈  ℕ  →  ( Λ ‘ ( 𝑛  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( Λ ‘ ( 𝑛  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 51 | 43 50 | remulcld | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  ∈  ℝ ) | 
						
							| 52 | 51 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  ∈  ℂ ) | 
						
							| 53 | 52 | anasss | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  ∈  ℂ ) | 
						
							| 54 | 37 38 53 | dvdsflsumcom | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) ) | 
						
							| 55 | 35 54 | eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 57 |  | fzfid | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 58 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 59 | 45 58 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 60 | 59 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 61 | 44 | nnrpd | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 62 |  | rpdivcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ℝ+ )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 63 | 61 62 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 64 | 63 | rpred | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 65 |  | chpcl | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ℝ  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 67 | 66 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ψ ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 68 | 60 67 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 69 | 45 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 70 |  | relogcl | ⊢ ( 𝑛  ∈  ℝ+  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 73 | 60 72 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 74 | 57 68 73 | fsumadd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 75 |  | fzfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 76 |  | dvdsssfz1 | ⊢ ( 𝑛  ∈  ℕ  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 77 | 45 76 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 78 | 75 77 | ssfid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 }  ∈  Fin ) | 
						
							| 79 | 78 51 | fsumrecl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  ∈  ℝ ) | 
						
							| 80 | 79 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  ∈  ℂ ) | 
						
							| 81 | 57 80 73 | fsumadd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 82 | 56 74 81 | 3eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 83 | 72 67 | addcomd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( ψ ‘ ( 𝑥  /  𝑛 ) )  +  ( log ‘ 𝑛 ) ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ( ψ ‘ ( 𝑥  /  𝑛 ) )  +  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 85 | 60 67 72 | adddid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( ψ ‘ ( 𝑥  /  𝑛 ) )  +  ( log ‘ 𝑛 ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 86 | 84 85 | eqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 87 | 86 | sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 88 |  | logsqvma2 | ⊢ ( 𝑛  ∈  ℕ  →  Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  ( Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 89 | 45 88 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  ( Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 90 | 89 | sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( Λ ‘ 𝑑 )  ·  ( Λ ‘ ( 𝑛  /  𝑑 ) ) )  +  ( ( Λ ‘ 𝑛 )  ·  ( log ‘ 𝑛 ) ) ) ) | 
						
							| 91 | 82 87 90 | 3eqtr4d | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 92 |  | fvoveq1 | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( log ‘ ( 𝑛  /  𝑑 ) )  =  ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 )  =  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝑛  =  ( 𝑑  ·  𝑚 )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 95 |  | mucl | ⊢ ( 𝑑  ∈  ℕ  →  ( μ ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 96 | 41 95 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( μ ‘ 𝑑 )  ∈  ℤ ) | 
						
							| 97 | 96 | zcnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( μ ‘ 𝑑 )  ∈  ℂ ) | 
						
							| 98 | 61 | ad2antrl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 99 | 41 | nnrpd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  𝑑  ∈  ℝ+ ) | 
						
							| 100 | 98 99 | rpdivcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( 𝑛  /  𝑑 )  ∈  ℝ+ ) | 
						
							| 101 |  | relogcl | ⊢ ( ( 𝑛  /  𝑑 )  ∈  ℝ+  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℝ ) | 
						
							| 102 | 101 | recnd | ⊢ ( ( 𝑛  /  𝑑 )  ∈  ℝ+  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℂ ) | 
						
							| 103 | 100 102 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( log ‘ ( 𝑛  /  𝑑 ) )  ∈  ℂ ) | 
						
							| 104 | 103 | sqcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 105 | 97 104 | mulcld | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∧  𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ) )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 106 | 94 38 105 | dvdsflsumcom | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑  ∈  { 𝑦  ∈  ℕ  ∣  𝑦  ∥  𝑛 } ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( 𝑛  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) ) ) | 
						
							| 107 | 29 | fveq2d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) )  =  ( log ‘ 𝑚 ) ) | 
						
							| 108 | 107 | oveq1d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 )  =  ( ( log ‘ 𝑚 ) ↑ 2 ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) )  →  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) )  =  ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 110 | 109 | sumeq2dv | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 111 | 110 | sumeq2dv | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ ( ( 𝑑  ·  𝑚 )  /  𝑑 ) ) ↑ 2 ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 112 | 91 106 111 | 3eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) | 
						
							| 113 | 112 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  =  ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 ) ) | 
						
							| 114 | 113 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 115 | 114 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 116 |  | eqid | ⊢ ( ( ( ( log ‘ ( 𝑥  /  𝑑 ) ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑑 ) ) ) ) )  /  𝑑 )  =  ( ( ( ( log ‘ ( 𝑥  /  𝑑 ) ) ↑ 2 )  +  ( 2  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑑 ) ) ) ) )  /  𝑑 ) | 
						
							| 117 | 116 | selberglem2 | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑑 ) ) ) ( ( μ ‘ 𝑑 )  ·  ( ( log ‘ 𝑚 ) ↑ 2 ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) | 
						
							| 118 | 115 117 | eqeltri | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) |