Metamath Proof Explorer


Theorem selberg2

Description: Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of Shapiro, p. 420. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberg2 ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1)

Proof

Step Hyp Ref Expression
1 reex ℝ ∈ V
2 rpssre + ⊆ ℝ
3 1 2 ssexi + ∈ V
4 3 a1i ( ⊤ → ℝ+ ∈ V )
5 ovexd ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ V )
6 ovexd ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ∈ V )
7 eqidd ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) )
8 eqidd ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) )
9 4 5 6 7 8 offval2 ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) )
10 9 mptru ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) )
11 fzfid ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
12 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ )
13 12 adantl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ )
14 vmacl ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ )
15 13 14 syl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ )
16 15 recnd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ )
17 13 nnrpd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ )
18 relogcl ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ )
19 17 18 syl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ )
20 19 recnd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ )
21 rpre ( 𝑥 ∈ ℝ+𝑥 ∈ ℝ )
22 nndivre ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑥 / 𝑛 ) ∈ ℝ )
23 21 12 22 syl2an ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ )
24 chpcl ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
25 23 24 syl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
26 25 recnd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
27 20 26 addcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
28 16 27 mulcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
29 11 28 fsumcl ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ )
30 rpcn ( 𝑥 ∈ ℝ+𝑥 ∈ ℂ )
31 rpne0 ( 𝑥 ∈ ℝ+𝑥 ≠ 0 )
32 29 30 31 divcld ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ∈ ℂ )
33 2cn 2 ∈ ℂ
34 relogcl ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ )
35 34 recnd ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℂ )
36 mulcl ( ( 2 ∈ ℂ ∧ ( log ‘ 𝑥 ) ∈ ℂ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℂ )
37 33 35 36 sylancr ( 𝑥 ∈ ℝ+ → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℂ )
38 16 20 mulcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
39 11 38 fsumcl ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ∈ ℂ )
40 chpcl ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ )
41 21 40 syl ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ )
42 41 recnd ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℂ )
43 42 35 mulcld ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ )
44 39 43 subcld ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ )
45 44 30 31 divcld ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ∈ ℂ )
46 32 37 45 sub32d ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( 2 · ( log ‘ 𝑥 ) ) ) )
47 rpcnne0 ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) )
48 divsubdir ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ∧ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) )
49 29 44 47 48 syl3anc ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) )
50 16 20 26 adddid ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
51 50 sumeq2dv ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
52 16 26 mulcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
53 11 38 52 fsumadd ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
54 51 53 eqtrd ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
55 54 oveq1d ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) )
56 11 52 fsumcl ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ )
57 39 56 43 pnncand ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) )
58 56 43 addcomd ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
59 55 57 58 3eqtrd ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) )
60 59 oveq1d ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) )
61 49 60 eqtr3d ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) )
62 61 oveq1d ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) )
63 46 62 eqtrd ( 𝑥 ∈ ℝ+ → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) )
64 63 mpteq2ia ( 𝑥 ∈ ℝ+ ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) )
65 10 64 eqtri ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) )
66 selberg ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1)
67 selberg2lem ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ 𝑂(1)
68 o1sub ( ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1) )
69 66 67 68 mp2an ( ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ) ∈ 𝑂(1)
70 65 69 eqeltrri ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1)