Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
2 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
3 |
1 2
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
5 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
6 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
7 |
5 6
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
8 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
10 |
9
|
nnrpd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ+ ) |
11 |
10
|
relogcld |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℂ ) |
13 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℂ ) |
15 |
12 14
|
subcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
16 |
4 15
|
mulcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
17 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
18 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
19 |
18
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
20 |
19
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
21 |
|
1rp |
⊢ 1 ∈ ℝ+ |
22 |
|
rpaddcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
23 |
21 22
|
mpan2 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
24 |
23
|
relogcld |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
25 |
|
relogcl |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ ) |
26 |
24 25
|
resubcld |
⊢ ( 𝑛 ∈ ℝ+ → ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) ∈ ℝ ) |
27 |
|
rpre |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) |
28 |
|
chpcl |
⊢ ( 𝑛 ∈ ℝ → ( ψ ‘ 𝑛 ) ∈ ℝ ) |
29 |
27 28
|
syl |
⊢ ( 𝑛 ∈ ℝ+ → ( ψ ‘ 𝑛 ) ∈ ℝ ) |
30 |
26 29
|
remulcld |
⊢ ( 𝑛 ∈ ℝ+ → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( 𝑛 ∈ ℝ+ → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ) |
32 |
20 31
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ) |
33 |
17 32
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ) |
34 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
35 |
|
divsubdir |
⊢ ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ ℂ ∧ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) / 𝑥 ) = ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) / 𝑥 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ) |
36 |
16 33 34 35
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) / 𝑥 ) = ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) / 𝑥 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ) |
37 |
4 12
|
mulcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ∈ ℂ ) |
38 |
4 14
|
mulcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
39 |
37 38 33
|
sub32d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
40 |
4 12 14
|
subdid |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( log ‘ 𝑚 ) = ( log ‘ 𝑛 ) ) |
43 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( 𝑛 − 1 ) ) ) |
44 |
42 43
|
jca |
⊢ ( 𝑚 = 𝑛 → ( ( log ‘ 𝑚 ) = ( log ‘ 𝑛 ) ∧ ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( 𝑛 − 1 ) ) ) ) |
45 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( log ‘ 𝑚 ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
46 |
|
fvoveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) |
47 |
45 46
|
jca |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( log ‘ 𝑚 ) = ( log ‘ ( 𝑛 + 1 ) ) ∧ ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑚 = 1 → ( log ‘ 𝑚 ) = ( log ‘ 1 ) ) |
49 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
50 |
48 49
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( log ‘ 𝑚 ) = 0 ) |
51 |
|
oveq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = ( 1 − 1 ) ) |
52 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
53 |
51 52
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = 0 ) |
54 |
53
|
fveq2d |
⊢ ( 𝑚 = 1 → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ 0 ) ) |
55 |
|
2pos |
⊢ 0 < 2 |
56 |
|
0re |
⊢ 0 ∈ ℝ |
57 |
|
chpeq0 |
⊢ ( 0 ∈ ℝ → ( ( ψ ‘ 0 ) = 0 ↔ 0 < 2 ) ) |
58 |
56 57
|
ax-mp |
⊢ ( ( ψ ‘ 0 ) = 0 ↔ 0 < 2 ) |
59 |
55 58
|
mpbir |
⊢ ( ψ ‘ 0 ) = 0 |
60 |
54 59
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( ψ ‘ ( 𝑚 − 1 ) ) = 0 ) |
61 |
50 60
|
jca |
⊢ ( 𝑚 = 1 → ( ( log ‘ 𝑚 ) = 0 ∧ ( ψ ‘ ( 𝑚 − 1 ) ) = 0 ) ) |
62 |
|
fveq2 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( log ‘ 𝑚 ) = ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
63 |
|
fvoveq1 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) |
64 |
62 63
|
jca |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( log ‘ 𝑚 ) = ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∧ ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) ) |
65 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
66 |
9 65
|
eleqtrdi |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
67 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) → 𝑚 ∈ ℕ ) |
68 |
67
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
69 |
68
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 𝑚 ∈ ℝ+ ) |
70 |
69
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
71 |
70
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
72 |
68
|
nnred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 𝑚 ∈ ℝ ) |
73 |
|
peano2rem |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 − 1 ) ∈ ℝ ) |
74 |
72 73
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( 𝑚 − 1 ) ∈ ℝ ) |
75 |
|
chpcl |
⊢ ( ( 𝑚 − 1 ) ∈ ℝ → ( ψ ‘ ( 𝑚 − 1 ) ) ∈ ℝ ) |
76 |
74 75
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( ψ ‘ ( 𝑚 − 1 ) ) ∈ ℝ ) |
77 |
76
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( ψ ‘ ( 𝑚 − 1 ) ) ∈ ℂ ) |
78 |
44 47 61 64 66 71 77
|
fsumparts |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( log ‘ 𝑛 ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) ) = ( ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 0 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) ) ) |
79 |
7
|
nn0zd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
80 |
|
fzval3 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
81 |
79 80
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
82 |
81
|
eqcomd |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) = ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
83 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
84 |
19 83
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
85 |
84
|
nn0red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
86 |
|
chpcl |
⊢ ( ( 𝑛 − 1 ) ∈ ℝ → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℝ ) |
87 |
85 86
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℝ ) |
88 |
87
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
89 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
90 |
19 89
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
91 |
90
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
92 |
19
|
nncnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
93 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
94 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
95 |
92 93 94
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
96 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
97 |
92 93 96
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
98 |
95 97
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) = ( ( 𝑛 − 1 ) + 1 ) ) |
99 |
98
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) |
100 |
|
chpp1 |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) |
101 |
84 100
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) |
102 |
97
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( Λ ‘ 𝑛 ) ) |
103 |
102
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ 𝑛 ) ) ) |
104 |
99 101 103
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ 𝑛 ) ) ) |
105 |
88 91 104
|
mvrladdd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) = ( Λ ‘ 𝑛 ) ) |
106 |
105
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ 𝑛 ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) ) = ( ( log ‘ 𝑛 ) · ( Λ ‘ 𝑛 ) ) ) |
107 |
20
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
108 |
107
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
109 |
91 108
|
mulcomd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) = ( ( log ‘ 𝑛 ) · ( Λ ‘ 𝑛 ) ) ) |
110 |
106 109
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ 𝑛 ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) |
111 |
82 110
|
sumeq12rdv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( log ‘ 𝑛 ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) ) |
112 |
7
|
nn0cnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
113 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑥 ) ) |
114 |
112 93 113
|
sylancl |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑥 ) ) |
115 |
114
|
fveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
116 |
|
chpfl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) = ( ψ ‘ 𝑥 ) ) |
117 |
1 116
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) = ( ψ ‘ 𝑥 ) ) |
118 |
115 117
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ψ ‘ 𝑥 ) ) |
119 |
118
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) = ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ 𝑥 ) ) ) |
120 |
12 4
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ 𝑥 ) ) = ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
121 |
119 120
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) = ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
122 |
|
0cn |
⊢ 0 ∈ ℂ |
123 |
122
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
124 |
123
|
a1i |
⊢ ( 𝑥 ∈ ℝ+ → ( 0 · 0 ) = 0 ) |
125 |
121 124
|
oveq12d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 0 · 0 ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − 0 ) ) |
126 |
37
|
subid1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − 0 ) = ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
127 |
125 126
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 0 · 0 ) ) = ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
128 |
95
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ψ ‘ 𝑛 ) ) |
129 |
128
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) = ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) |
130 |
82 129
|
sumeq12rdv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) |
131 |
127 130
|
oveq12d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 0 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ) |
132 |
78 111 131
|
3eqtr3d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) = ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ) |
133 |
132
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) · ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
134 |
39 41 133
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
135 |
134
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) |
136 |
|
div23 |
⊢ ( ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) |
137 |
4 15 34 136
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) |
138 |
137
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( ψ ‘ 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) / 𝑥 ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) = ( ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ) |
139 |
36 135 138
|
3eqtr3rd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) |
140 |
139
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) |
141 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ V ) |
142 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ∈ V ) |
143 |
|
reex |
⊢ ℝ ∈ V |
144 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
145 |
143 144
|
ssexi |
⊢ ℝ+ ∈ V |
146 |
145
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ V ) |
147 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ V ) |
148 |
15
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
149 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
150 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) |
151 |
146 147 148 149 150
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) ) |
152 |
|
chpo1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
153 |
|
0red |
⊢ ( ⊤ → 0 ∈ ℝ ) |
154 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
155 |
|
divrcnv |
⊢ ( 1 ∈ ℂ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 ) |
156 |
93 155
|
mp1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 ) |
157 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
158 |
157
|
rpred |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ ) |
159 |
158
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ ) |
160 |
11 13
|
resubcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
161 |
160
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
162 |
|
rpaddcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝑥 + 1 ) ∈ ℝ+ ) |
163 |
21 162
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 + 1 ) ∈ ℝ+ ) |
164 |
163
|
relogcld |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( 𝑥 + 1 ) ) ∈ ℝ ) |
165 |
164 13
|
resubcld |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( 𝑥 + 1 ) ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
166 |
7
|
nn0red |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
167 |
|
1red |
⊢ ( 𝑥 ∈ ℝ+ → 1 ∈ ℝ ) |
168 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
169 |
1 168
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
170 |
166 1 167 169
|
leadd1dd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) + 1 ) ≤ ( 𝑥 + 1 ) ) |
171 |
10 163
|
logled |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ≤ ( 𝑥 + 1 ) ↔ ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( log ‘ ( 𝑥 + 1 ) ) ) ) |
172 |
170 171
|
mpbid |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( log ‘ ( 𝑥 + 1 ) ) ) |
173 |
11 164 13 172
|
lesub1dd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ≤ ( ( log ‘ ( 𝑥 + 1 ) ) − ( log ‘ 𝑥 ) ) ) |
174 |
|
logdifbnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( 𝑥 + 1 ) ) − ( log ‘ 𝑥 ) ) ≤ ( 1 / 𝑥 ) ) |
175 |
160 165 158 173 174
|
letrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ≤ ( 1 / 𝑥 ) ) |
176 |
175
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ≤ ( 1 / 𝑥 ) ) |
177 |
|
fllep1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
178 |
1 177
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
179 |
|
logleb |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ+ ) → ( 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
180 |
10 179
|
mpdan |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
181 |
178 180
|
mpbid |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
182 |
11 13
|
subge0d |
⊢ ( 𝑥 ∈ ℝ+ → ( 0 ≤ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
183 |
181 182
|
mpbird |
⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) |
184 |
183
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 0 ≤ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) |
185 |
153 154 156 159 161 176 184
|
rlimsqz2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 ) |
186 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
187 |
185 186
|
syl |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
188 |
|
o1mul |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
189 |
152 187 188
|
sylancr |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
190 |
151 189
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
191 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
192 |
191
|
ssriv |
⊢ ℕ ⊆ ℝ+ |
193 |
192
|
a1i |
⊢ ( ⊤ → ℕ ⊆ ℝ+ ) |
194 |
193
|
sselda |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
195 |
194 31
|
syl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ) |
196 |
|
chpo1ub |
⊢ ( 𝑛 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) |
197 |
196
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
198 |
|
rerpdivcl |
⊢ ( ( ( ψ ‘ 𝑛 ) ∈ ℝ ∧ 𝑛 ∈ ℝ+ ) → ( ( ψ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
199 |
29 198
|
mpancom |
⊢ ( 𝑛 ∈ ℝ+ → ( ( ψ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
200 |
199
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℝ+ ) → ( ( ψ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
201 |
31
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℝ+ ) → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ∈ ℂ ) |
202 |
|
rpreccl |
⊢ ( 𝑛 ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
203 |
202
|
rpred |
⊢ ( 𝑛 ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ ) |
204 |
|
chpge0 |
⊢ ( 𝑛 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑛 ) ) |
205 |
27 204
|
syl |
⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ ( ψ ‘ 𝑛 ) ) |
206 |
|
logdifbnd |
⊢ ( 𝑛 ∈ ℝ+ → ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) ≤ ( 1 / 𝑛 ) ) |
207 |
26 203 29 205 206
|
lemul1ad |
⊢ ( 𝑛 ∈ ℝ+ → ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ≤ ( ( 1 / 𝑛 ) · ( ψ ‘ 𝑛 ) ) ) |
208 |
27
|
lep1d |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≤ ( 𝑛 + 1 ) ) |
209 |
|
logleb |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ ( 𝑛 + 1 ) ∈ ℝ+ ) → ( 𝑛 ≤ ( 𝑛 + 1 ) ↔ ( log ‘ 𝑛 ) ≤ ( log ‘ ( 𝑛 + 1 ) ) ) ) |
210 |
23 209
|
mpdan |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ≤ ( 𝑛 + 1 ) ↔ ( log ‘ 𝑛 ) ≤ ( log ‘ ( 𝑛 + 1 ) ) ) ) |
211 |
208 210
|
mpbid |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ≤ ( log ‘ ( 𝑛 + 1 ) ) ) |
212 |
24 25
|
subge0d |
⊢ ( 𝑛 ∈ ℝ+ → ( 0 ≤ ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) ↔ ( log ‘ 𝑛 ) ≤ ( log ‘ ( 𝑛 + 1 ) ) ) ) |
213 |
211 212
|
mpbird |
⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) ) |
214 |
26 29 213 205
|
mulge0d |
⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) |
215 |
30 214
|
absidd |
⊢ ( 𝑛 ∈ ℝ+ → ( abs ‘ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) = ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) |
216 |
|
rpregt0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
217 |
|
divge0 |
⊢ ( ( ( ( ψ ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ψ ‘ 𝑛 ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → 0 ≤ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) |
218 |
29 205 216 217
|
syl21anc |
⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) |
219 |
199 218
|
absidd |
⊢ ( 𝑛 ∈ ℝ+ → ( abs ‘ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) = ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) |
220 |
29
|
recnd |
⊢ ( 𝑛 ∈ ℝ+ → ( ψ ‘ 𝑛 ) ∈ ℂ ) |
221 |
|
rpcn |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ ) |
222 |
|
rpne0 |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) |
223 |
220 221 222
|
divrec2d |
⊢ ( 𝑛 ∈ ℝ+ → ( ( ψ ‘ 𝑛 ) / 𝑛 ) = ( ( 1 / 𝑛 ) · ( ψ ‘ 𝑛 ) ) ) |
224 |
219 223
|
eqtrd |
⊢ ( 𝑛 ∈ ℝ+ → ( abs ‘ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) = ( ( 1 / 𝑛 ) · ( ψ ‘ 𝑛 ) ) ) |
225 |
207 215 224
|
3brtr4d |
⊢ ( 𝑛 ∈ ℝ+ → ( abs ‘ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ≤ ( abs ‘ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) ) |
226 |
225
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑛 ∈ ℝ+ ∧ 1 ≤ 𝑛 ) ) → ( abs ‘ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ≤ ( abs ‘ ( ( ψ ‘ 𝑛 ) / 𝑛 ) ) ) |
227 |
154 197 200 201 226
|
o1le |
⊢ ( ⊤ → ( 𝑛 ∈ ℝ+ ↦ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ∈ 𝑂(1) ) |
228 |
193 227
|
o1res2 |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) ) ∈ 𝑂(1) ) |
229 |
195 228
|
o1fsum |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |
230 |
141 142 190 229
|
o1sub2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) · ( ( log ‘ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − ( log ‘ 𝑥 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 𝑛 ) ) · ( ψ ‘ 𝑛 ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ) |
231 |
140 230
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |
232 |
231
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( log ‘ 𝑛 ) ) − ( ( ψ ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) ) ∈ 𝑂(1) |