| Step |
Hyp |
Ref |
Expression |
| 1 |
|
selberg3lem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
selberg3lem1.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) / 𝑦 ) ) ≤ 𝐴 ) |
| 3 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 4 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
| 5 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 6 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
| 7 |
4 5 6
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
| 8 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 9 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 11 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 13 |
12 10
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 14 |
8 13
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 15 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 16 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 1 < 𝑥 ) |
| 18 |
15 17
|
rplogcld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 19 |
|
rpdivcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( log ‘ 𝑥 ) ∈ ℝ+ ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 20 |
1 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 21 |
20
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 22 |
14 21
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℂ ) |
| 25 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 26 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 27 |
26
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 28 |
20
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 29 |
25 27 28
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − ( ( log ‘ 𝑥 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ) |
| 30 |
26
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 ) |
| 31 |
24 27 30
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) = 𝐴 ) |
| 32 |
31
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − ( ( log ‘ 𝑥 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − 𝐴 ) ) |
| 33 |
29 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − 𝐴 ) ) |
| 34 |
33
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − 𝐴 ) ) ) |
| 35 |
26
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 36 |
14 35
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 37 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 38 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ∈ ℝ ) |
| 39 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
| 40 |
|
0lt1 |
⊢ 0 < 1 |
| 41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 < 1 ) |
| 42 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
| 43 |
38 39 37 41 42
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 < 𝑥 ) |
| 44 |
37 43
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 45 |
44
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) ) |
| 46 |
45
|
ssrdv |
⊢ ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
| 47 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 49 |
46 48
|
o1res2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 50 |
4
|
a1i |
⊢ ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ ) |
| 51 |
|
ere |
⊢ e ∈ ℝ |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → e ∈ ℝ ) |
| 53 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 54 |
20
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 55 |
54
|
rprege0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) |
| 56 |
|
absid |
⊢ ( ( ( 𝐴 / ( log ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / ( log ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝐴 / ( log ‘ 𝑥 ) ) ) = ( 𝐴 / ( log ‘ 𝑥 ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( abs ‘ ( 𝐴 / ( log ‘ 𝑥 ) ) ) = ( 𝐴 / ( log ‘ 𝑥 ) ) ) |
| 58 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 59 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → e ≤ 𝑥 ) |
| 60 |
|
epr |
⊢ e ∈ ℝ+ |
| 61 |
44
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → 𝑥 ∈ ℝ+ ) |
| 62 |
|
logleb |
⊢ ( ( e ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( e ≤ 𝑥 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑥 ) ) ) |
| 63 |
60 61 62
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( e ≤ 𝑥 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑥 ) ) ) |
| 64 |
59 63
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( log ‘ e ) ≤ ( log ‘ 𝑥 ) ) |
| 65 |
58 64
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → 1 ≤ ( log ‘ 𝑥 ) ) |
| 66 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 67 |
|
rpregt0 |
⊢ ( 1 ∈ ℝ+ → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 68 |
66 67
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 1 ∈ ℝ ∧ 0 < 1 ) ) |
| 69 |
26
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 70 |
69
|
rpregt0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( log ‘ 𝑥 ) ) ) |
| 71 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → 𝐴 ∈ ℝ+ ) |
| 72 |
71
|
rpregt0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 73 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( log ‘ 𝑥 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ ( log ‘ 𝑥 ) ↔ ( 𝐴 / ( log ‘ 𝑥 ) ) ≤ ( 𝐴 / 1 ) ) ) |
| 74 |
68 70 72 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 1 ≤ ( log ‘ 𝑥 ) ↔ ( 𝐴 / ( log ‘ 𝑥 ) ) ≤ ( 𝐴 / 1 ) ) ) |
| 75 |
65 74
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ≤ ( 𝐴 / 1 ) ) |
| 76 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → 𝐴 ∈ ℂ ) |
| 77 |
76
|
div1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 78 |
75 77
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( 𝐴 / ( log ‘ 𝑥 ) ) ≤ 𝐴 ) |
| 79 |
57 78
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ e ≤ 𝑥 ) ) → ( abs ‘ ( 𝐴 / ( log ‘ 𝑥 ) ) ) ≤ 𝐴 ) |
| 80 |
50 28 52 53 79
|
elo1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 𝐴 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 81 |
36 21 49 80
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 82 |
34 81
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) − 𝐴 ) ) ∈ 𝑂(1) ) |
| 83 |
23 24 82
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) ) |
| 84 |
7 83
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 85 |
|
2re |
⊢ 2 ∈ ℝ |
| 86 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝑥 ) ∈ ℝ+ ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 87 |
85 26 86
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 88 |
|
nndivre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
| 89 |
37 9 88
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
| 90 |
|
chpcl |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 91 |
89 90
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 92 |
12 91
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 93 |
10
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 94 |
93
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 95 |
92 94
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 96 |
8 95
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 97 |
87 96
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 98 |
8 92
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 99 |
97 98
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 100 |
99 44
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 101 |
100
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ∈ ℂ ) |
| 102 |
101
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ∈ ℝ ) |
| 103 |
23
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 104 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℂ ) |
| 105 |
96
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 106 |
104 105
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 107 |
98
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 108 |
107 27
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 109 |
106 108
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 110 |
109
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 111 |
43
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ≠ 0 ) |
| 112 |
110 37 111
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 113 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ ) |
| 114 |
14 113
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ∈ ℝ ) |
| 115 |
12
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 116 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
| 117 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 118 |
117
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 119 |
|
vmacl |
⊢ ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
| 120 |
118 119
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
| 121 |
118
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 122 |
121
|
relogcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 123 |
120 122
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℝ ) |
| 124 |
116 123
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℝ ) |
| 125 |
9
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 126 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 127 |
44 125 126
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 128 |
127
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 129 |
91 128
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 130 |
124 129
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 131 |
130
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 132 |
115 131
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ) |
| 133 |
8 132
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℂ ) |
| 134 |
133
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ∈ ℝ ) |
| 135 |
132
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ∈ ℝ ) |
| 136 |
8 135
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ∈ ℝ ) |
| 137 |
113 37
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 · 𝑥 ) ∈ ℝ ) |
| 138 |
14 137
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ∈ ℝ ) |
| 139 |
8 132
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 140 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℝ ) |
| 141 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 142 |
140 141
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐴 · 𝑥 ) ∈ ℝ ) |
| 143 |
13 142
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ∈ ℝ ) |
| 144 |
131
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 145 |
142 10
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐴 · 𝑥 ) / 𝑛 ) ∈ ℝ ) |
| 146 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 147 |
10 146
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 148 |
89
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ ) |
| 149 |
127
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ≠ 0 ) |
| 150 |
131 148 149
|
absdivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 151 |
127
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( 𝑥 / 𝑛 ) ) |
| 152 |
89 151
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑥 / 𝑛 ) ) = ( 𝑥 / 𝑛 ) ) |
| 153 |
152
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( abs ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 154 |
150 153
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 155 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( Λ ‘ 𝑘 ) = ( Λ ‘ 𝑚 ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( log ‘ 𝑘 ) = ( log ‘ 𝑚 ) ) |
| 157 |
155 156
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) |
| 158 |
157
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) |
| 159 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) |
| 160 |
159
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 161 |
160
|
sumeq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) |
| 162 |
158 161
|
eqtrid |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) |
| 163 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ψ ‘ 𝑦 ) = ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( log ‘ 𝑦 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
| 165 |
163 164
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 166 |
162 165
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 167 |
|
id |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → 𝑦 = ( 𝑥 / 𝑛 ) ) |
| 168 |
166 167
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) / 𝑦 ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 169 |
168
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( abs ‘ ( ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) / 𝑦 ) ) = ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) ) |
| 170 |
169
|
breq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( abs ‘ ( ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) / 𝑦 ) ) ≤ 𝐴 ↔ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) ≤ 𝐴 ) ) |
| 171 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑘 ) · ( log ‘ 𝑘 ) ) − ( ( ψ ‘ 𝑦 ) · ( log ‘ 𝑦 ) ) ) / 𝑦 ) ) ≤ 𝐴 ) |
| 172 |
10
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 173 |
172
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
| 174 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
| 175 |
37 174
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
| 176 |
175
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑥 ) |
| 177 |
173 176
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) ≤ 𝑥 ) |
| 178 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 179 |
178 141 93
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
| 180 |
177 179
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑛 ) ) |
| 181 |
|
1re |
⊢ 1 ∈ ℝ |
| 182 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) ) |
| 183 |
181 182
|
ax-mp |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
| 184 |
89 180 183
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ) |
| 185 |
170 171 184
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) ≤ 𝐴 ) |
| 186 |
154 185
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( 𝑥 / 𝑛 ) ) ≤ 𝐴 ) |
| 187 |
144 140 127
|
ledivmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( 𝑥 / 𝑛 ) ) ≤ 𝐴 ↔ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( 𝐴 · ( 𝑥 / 𝑛 ) ) ) ) |
| 188 |
186 187
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( 𝐴 · ( 𝑥 / 𝑛 ) ) ) |
| 189 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℂ ) |
| 190 |
141
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
| 191 |
10
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 192 |
189 190 172 191
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐴 · 𝑥 ) / 𝑛 ) = ( 𝐴 · ( 𝑥 / 𝑛 ) ) ) |
| 193 |
188 192
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ ( ( 𝐴 · 𝑥 ) / 𝑛 ) ) |
| 194 |
144 145 12 147 193
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ ( ( Λ ‘ 𝑛 ) · ( ( 𝐴 · 𝑥 ) / 𝑛 ) ) ) |
| 195 |
115 131
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) = ( ( abs ‘ ( Λ ‘ 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 196 |
12 147
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Λ ‘ 𝑛 ) ) = ( Λ ‘ 𝑛 ) ) |
| 197 |
196
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( Λ ‘ 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 198 |
195 197
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 199 |
142
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 200 |
115 172 199 191
|
div32d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) = ( ( Λ ‘ 𝑛 ) · ( ( 𝐴 · 𝑥 ) / 𝑛 ) ) ) |
| 201 |
194 198 200
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 202 |
8 135 143 201
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 203 |
37
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 204 |
24 203
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 205 |
115 172 191
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 206 |
8 204 205
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 207 |
202 206
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 208 |
134 136 138 139 207
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 209 |
124
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℂ ) |
| 210 |
91
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 211 |
94
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
| 212 |
210 211
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 213 |
209 212
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 214 |
115 213
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℂ ) |
| 215 |
115 210
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 216 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 217 |
215 216
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 218 |
8 214 217
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 219 |
210 216
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 220 |
115 213 219
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) ) |
| 221 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 222 |
221 93
|
relogdivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) = ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) |
| 223 |
222
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) ) |
| 224 |
210 216 211
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( ( log ‘ 𝑥 ) − ( log ‘ 𝑛 ) ) ) = ( ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 225 |
223 224
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 226 |
225
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 227 |
209 219 212
|
subsub3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 228 |
226 227
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 229 |
228
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) ) |
| 230 |
115 210 216
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) = ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 231 |
230
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑥 ) ) ) ) ) |
| 232 |
220 229 231
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 233 |
232
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 234 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( Λ ‘ 𝑛 ) = ( Λ ‘ 𝑚 ) ) |
| 235 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 / 𝑛 ) = ( 𝑥 / 𝑚 ) ) |
| 236 |
235
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( ψ ‘ ( 𝑥 / 𝑛 ) ) = ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) |
| 237 |
234 236
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) ) |
| 238 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( log ‘ 𝑛 ) = ( log ‘ 𝑚 ) ) |
| 239 |
237 238
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) ) |
| 240 |
239
|
cbvsumv |
⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) |
| 241 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) → 𝑛 ∈ ℕ ) |
| 242 |
241
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 243 |
242 11
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 244 |
243
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 245 |
244
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 246 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑚 ∈ ℕ ) |
| 247 |
246
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ℕ ) |
| 248 |
247 119
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
| 249 |
248
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℂ ) |
| 250 |
247
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ+ ) |
| 251 |
250
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 252 |
251
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 253 |
249 252
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℂ ) |
| 254 |
253
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℂ ) |
| 255 |
245 254
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ∈ ℂ ) |
| 256 |
37 255
|
fsumfldivdiag |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 257 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 258 |
257 247
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑚 ) ∈ ℝ ) |
| 259 |
|
chpcl |
⊢ ( ( 𝑥 / 𝑚 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑚 ) ) ∈ ℝ ) |
| 260 |
258 259
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑚 ) ) ∈ ℝ ) |
| 261 |
260
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑚 ) ) ∈ ℂ ) |
| 262 |
249 261 252
|
mul32d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) = ( ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) ) |
| 263 |
248 251
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℝ ) |
| 264 |
263
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℂ ) |
| 265 |
264 261
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) = ( ( ψ ‘ ( 𝑥 / 𝑚 ) ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 266 |
|
chpval |
⊢ ( ( 𝑥 / 𝑚 ) ∈ ℝ → ( ψ ‘ ( 𝑥 / 𝑚 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( Λ ‘ 𝑛 ) ) |
| 267 |
258 266
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑥 / 𝑚 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( Λ ‘ 𝑛 ) ) |
| 268 |
267
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑚 ) ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 269 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ∈ Fin ) |
| 270 |
269 264 244
|
fsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 271 |
268 270
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑥 / 𝑚 ) ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 272 |
262 265 271
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 273 |
272
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 274 |
123
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ∈ ℂ ) |
| 275 |
116 115 274
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 276 |
275
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑛 ) · ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 277 |
256 273 276
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑚 ) · ( ψ ‘ ( 𝑥 / 𝑚 ) ) ) · ( log ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 278 |
240 277
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ) |
| 279 |
115 210 211
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 280 |
279
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 281 |
278 280
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 282 |
105
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 283 |
115 209
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) ∈ ℂ ) |
| 284 |
115 212
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 285 |
8 283 284
|
fsumadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 286 |
281 282 285
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 287 |
115 209 212
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 288 |
287
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) ) + ( ( Λ ‘ 𝑛 ) · ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 289 |
286 288
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 290 |
92
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 291 |
8 27 290
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) |
| 292 |
289 291
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) + ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 293 |
218 233 292
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
| 294 |
293
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( log ‘ 𝑚 ) ) − ( ( ψ ‘ ( 𝑥 / 𝑛 ) ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) ) |
| 295 |
25 24 203
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) · 𝑥 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 · 𝑥 ) ) ) |
| 296 |
208 294 295
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) · 𝑥 ) ) |
| 297 |
110 114 44
|
ledivmul2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ↔ ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) · 𝑥 ) ) ) |
| 298 |
296 297
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) ) |
| 299 |
112 114 26 298
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) ≤ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) ) |
| 300 |
110
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 301 |
300 203 27 111 30
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) = ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
| 302 |
109 27 203 30 111
|
divdiv32d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( log ‘ 𝑥 ) ) / 𝑥 ) = ( ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) ) |
| 303 |
106 108 27 30
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 304 |
104 105 27 30
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 305 |
107 27 30
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 306 |
304 305
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 307 |
303 306
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 308 |
307
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( log ‘ 𝑥 ) ) / 𝑥 ) = ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) |
| 309 |
109 203 27 111 30
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) = ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
| 310 |
302 308 309
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
| 311 |
310
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) = ( abs ‘ ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) ) |
| 312 |
44 26
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 313 |
312
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 314 |
312
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ≠ 0 ) |
| 315 |
109 313 314
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) = ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / ( abs ‘ ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) ) |
| 316 |
312
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 317 |
312
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( 𝑥 · ( log ‘ 𝑥 ) ) ) |
| 318 |
316 317
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( 𝑥 · ( log ‘ 𝑥 ) ) ) = ( 𝑥 · ( log ‘ 𝑥 ) ) ) |
| 319 |
318
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / ( abs ‘ ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) = ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
| 320 |
311 315 319
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) = ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
| 321 |
301 320
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) = ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ) |
| 322 |
25 24 27 30
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · 𝐴 ) / ( log ‘ 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) |
| 323 |
299 321 322
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) |
| 324 |
22
|
leabsd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ) |
| 325 |
102 22 103 323 324
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ≤ ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ) |
| 326 |
325
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ≤ ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( 𝐴 / ( log ‘ 𝑥 ) ) ) ) ) |
| 327 |
3 84 22 101 326
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ψ ‘ ( 𝑥 / 𝑛 ) ) ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |