Step |
Hyp |
Ref |
Expression |
1 |
|
selberg4lem1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
selberg4lem1.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) − ( 2 · ( log ‘ 𝑦 ) ) ) ) ≤ 𝐴 ) |
3 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℂ ) |
4 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
5 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
7 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
9 |
8 6
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
10 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
12 |
|
1rp |
⊢ 1 ∈ ℝ+ |
13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
14 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
15 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
18 |
14 11 17
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 ) |
19 |
11 13 18
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
21 |
6
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
22 |
20 21
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
23 |
22
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
24 |
9 23
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
25 |
4 24
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
26 |
11 17
|
rplogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
27 |
25 26
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
29 |
19
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
30 |
29
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / 2 ) ∈ ℂ ) |
32 |
3 28 31
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) ) ) |
33 |
29
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
34 |
|
2ne0 |
⊢ 2 ≠ 0 |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ≠ 0 ) |
36 |
33 3 35
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) = ( log ‘ 𝑥 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( 2 · ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) |
38 |
32 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) = ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) |
39 |
38
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ) |
40 |
|
2re |
⊢ 2 ∈ ℝ |
41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℝ ) |
42 |
27 30
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ∈ ℝ ) |
43 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
44 |
|
2cn |
⊢ 2 ∈ ℂ |
45 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 2 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1) ) |
46 |
43 44 45
|
mp2an |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1) |
47 |
46
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 2 ) ∈ 𝑂(1) ) |
48 |
|
vmalogdivsum2 |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ∈ 𝑂(1) ) |
50 |
41 42 47 49
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 2 · ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / 2 ) ) ) ) ∈ 𝑂(1) ) |
51 |
39 50
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
52 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
53 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
55 |
|
vmacl |
⊢ ( 𝑚 ∈ ℕ → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
56 |
54 55
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( Λ ‘ 𝑚 ) ∈ ℝ ) |
57 |
54
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
58 |
57
|
relogcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
59 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
60 |
59 6
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
62 |
61 54
|
nndivred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( 𝑥 / 𝑛 ) / 𝑚 ) ∈ ℝ ) |
63 |
|
chpcl |
⊢ ( ( ( 𝑥 / 𝑛 ) / 𝑚 ) ∈ ℝ → ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ∈ ℝ ) |
64 |
62 63
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ∈ ℝ ) |
65 |
58 64
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ∈ ℝ ) |
66 |
56 65
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ∈ ℝ ) |
67 |
52 66
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ∈ ℝ ) |
68 |
8 67
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) ∈ ℝ ) |
69 |
4 68
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) ∈ ℝ ) |
70 |
19 26
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
71 |
69 70
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
72 |
71 29
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
73 |
72
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
74 |
25
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
75 |
26
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 ) |
76 |
74 33 75
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
77 |
3 76
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
78 |
77 33
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
79 |
71
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
80 |
79 77 33
|
nnncan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) − ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ) ) |
81 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) ∈ ℂ ) |
82 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℂ ) |
83 |
19
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ≠ 0 ) |
84 |
81 82 33 83 75
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) ) |
85 |
3 74 33 75
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) = ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ) |
86 |
84 85
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) − ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) ) ) |
87 |
69 19
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) ∈ ℝ ) |
88 |
87
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) ∈ ℂ ) |
89 |
3 74
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
90 |
88 89 33 75
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) = ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) − ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ) |
91 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ≠ 0 ) |
92 |
68 59 91
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) ∈ ℝ ) |
93 |
92
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) ∈ ℂ ) |
94 |
40
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 2 ∈ ℝ ) |
95 |
94 24
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
96 |
95
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
97 |
4 93 96
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
98 |
8
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
99 |
67 59 91
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
100 |
99
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) ∈ ℂ ) |
101 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 2 ∈ ℂ ) |
102 |
23
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
103 |
6
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
104 |
6
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
105 |
102 103 104
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ∈ ℂ ) |
106 |
101 105
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ∈ ℂ ) |
107 |
98 100 106
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) ) − ( ( Λ ‘ 𝑛 ) · ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) |
108 |
67
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ∈ ℂ ) |
109 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
110 |
98 108 109 91
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) = ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) ) ) |
111 |
98 103 102 104
|
div32d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) |
112 |
111
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 2 · ( ( Λ ‘ 𝑛 ) · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) |
113 |
101 98 105
|
mul12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( Λ ‘ 𝑛 ) · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) = ( ( Λ ‘ 𝑛 ) · ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) |
114 |
112 113
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) |
115 |
110 114
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) ) − ( ( Λ ‘ 𝑛 ) · ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) |
116 |
107 115
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) = ( ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
117 |
116
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
118 |
68
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) ∈ ℂ ) |
119 |
4 82 118 83
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) ) |
120 |
24
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
121 |
4 3 120
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
122 |
119 121
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2 · ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
123 |
97 117 122
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) |
124 |
123
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) − ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
125 |
90 124
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / 𝑥 ) / ( log ‘ 𝑥 ) ) − ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
126 |
80 86 125
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) − ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
127 |
126
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) − ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ) |
128 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
129 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ+ ) |
130 |
129
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ ) |
131 |
4 9
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
132 |
131 26
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
133 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
134 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
135 |
43 133 134
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 𝐴 ) ∈ 𝑂(1) ) |
136 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
137 |
|
o1const |
⊢ ( ( ( 1 (,) +∞ ) ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) |
138 |
43 136 137
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) |
139 |
132
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
140 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℂ ) |
141 |
131
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
142 |
141 33 33 75
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) ) |
143 |
141 33
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
144 |
143 33 75
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) / ( log ‘ 𝑥 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) |
145 |
33 75
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) = 1 ) |
146 |
145
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − ( ( log ‘ 𝑥 ) / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) |
147 |
142 144 146
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) |
148 |
147
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) ) |
149 |
131 29
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
150 |
14 26
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
151 |
19
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) ) |
152 |
151
|
ssrdv |
⊢ ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ+ ) |
153 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
154 |
153
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
155 |
152 154
|
o1res2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
156 |
|
divlogrlim |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 |
157 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ⇝𝑟 0 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
158 |
156 157
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 1 / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
159 |
149 150 155 158
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) · ( 1 / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
160 |
148 159
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) − 1 ) ) ∈ 𝑂(1) ) |
161 |
139 140 160
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ 1 ) ∈ 𝑂(1) ) ) |
162 |
138 161
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
163 |
130 132 135 162
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
164 |
130 132
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
165 |
23 6
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ∈ ℝ ) |
166 |
94 165
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ∈ ℝ ) |
167 |
99 166
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ∈ ℝ ) |
168 |
8 167
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℝ ) |
169 |
4 168
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℝ ) |
170 |
169 26
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
171 |
170
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
172 |
169
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℂ ) |
173 |
172
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ∈ ℝ ) |
174 |
130 131
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
175 |
100 106
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ∈ ℂ ) |
176 |
98 175
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℂ ) |
177 |
176
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ∈ ℝ ) |
178 |
4 177
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ∈ ℝ ) |
179 |
168
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℂ ) |
180 |
4 179
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ) |
181 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℝ ) |
182 |
181 9
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐴 · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
183 |
175
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ∈ ℝ ) |
184 |
181 6
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
185 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
186 |
6 185
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
187 |
108 109 103 91 104
|
divdiv2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) · 𝑛 ) / 𝑥 ) ) |
188 |
108 103 109 91
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) · 𝑛 ) / 𝑥 ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) · 𝑛 ) ) |
189 |
187 188
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) · 𝑛 ) ) |
190 |
101 105 103
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) · 𝑛 ) = ( 2 · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) · 𝑛 ) ) ) |
191 |
102 103 104
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) · 𝑛 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
192 |
191
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) · 𝑛 ) ) = ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
193 |
190 192
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) · 𝑛 ) ) |
194 |
189 193
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) · 𝑛 ) − ( ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) · 𝑛 ) ) ) |
195 |
100 106 103
|
subdird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) · 𝑛 ) = ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) · 𝑛 ) − ( ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) · 𝑛 ) ) ) |
196 |
194 195
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) · 𝑛 ) ) |
197 |
196
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( abs ‘ ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) · 𝑛 ) ) ) |
198 |
175 103
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) · 𝑛 ) ) = ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · ( abs ‘ 𝑛 ) ) ) |
199 |
6
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ ) |
200 |
21
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ 𝑛 ) |
201 |
199 200
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
202 |
201
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · ( abs ‘ 𝑛 ) ) = ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · 𝑛 ) ) |
203 |
197 198 202
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) = ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · 𝑛 ) ) |
204 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( Λ ‘ 𝑖 ) = ( Λ ‘ 𝑚 ) ) |
205 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( log ‘ 𝑖 ) = ( log ‘ 𝑚 ) ) |
206 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑦 / 𝑖 ) = ( 𝑦 / 𝑚 ) ) |
207 |
206
|
fveq2d |
⊢ ( 𝑖 = 𝑚 → ( ψ ‘ ( 𝑦 / 𝑖 ) ) = ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) |
208 |
205 207
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) = ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) |
209 |
204 208
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) = ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) ) |
210 |
209
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) |
211 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) |
212 |
211
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
213 |
|
fvoveq1 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ψ ‘ ( 𝑦 / 𝑚 ) ) = ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) |
214 |
213
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) = ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) |
215 |
214
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) = ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) |
216 |
215
|
adantr |
⊢ ( ( 𝑦 = ( 𝑥 / 𝑛 ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) = ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) |
217 |
212 216
|
sumeq12dv |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( 𝑦 / 𝑚 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) |
218 |
210 217
|
syl5eq |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) |
219 |
|
id |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → 𝑦 = ( 𝑥 / 𝑛 ) ) |
220 |
218 219
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
221 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( log ‘ 𝑦 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
222 |
221
|
oveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 2 · ( log ‘ 𝑦 ) ) = ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) |
223 |
220 222
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) − ( 2 · ( log ‘ 𝑦 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
224 |
223
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( abs ‘ ( ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) − ( 2 · ( log ‘ 𝑦 ) ) ) ) = ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ) |
225 |
224
|
breq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( abs ‘ ( ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) − ( 2 · ( log ‘ 𝑦 ) ) ) ) ≤ 𝐴 ↔ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ 𝐴 ) ) |
226 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑦 / 𝑖 ) ) ) ) / 𝑦 ) − ( 2 · ( log ‘ 𝑦 ) ) ) ) ≤ 𝐴 ) |
227 |
103
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) = 𝑛 ) |
228 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
229 |
11 228
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑥 ) ) ) |
230 |
229
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑥 ) |
231 |
227 230
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑛 ) ≤ 𝑥 ) |
232 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
233 |
232 59 21
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑛 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
234 |
231 233
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑛 ) ) |
235 |
|
1re |
⊢ 1 ∈ ℝ |
236 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) ) |
237 |
235 236
|
ax-mp |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ↔ ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑛 ) ) ) |
238 |
60 234 237
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ( 1 [,) +∞ ) ) |
239 |
225 226 238
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / ( 𝑥 / 𝑛 ) ) − ( 2 · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ≤ 𝐴 ) |
240 |
203 239
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · 𝑛 ) ≤ 𝐴 ) |
241 |
183 181 21
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) · 𝑛 ) ≤ 𝐴 ↔ ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ≤ ( 𝐴 / 𝑛 ) ) ) |
242 |
240 241
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ≤ ( 𝐴 / 𝑛 ) ) |
243 |
183 184 8 186 242
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ ( ( Λ ‘ 𝑛 ) · ( 𝐴 / 𝑛 ) ) ) |
244 |
98 175
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) = ( ( abs ‘ ( Λ ‘ 𝑛 ) ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ) |
245 |
8 186
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Λ ‘ 𝑛 ) ) = ( Λ ‘ 𝑛 ) ) |
246 |
245
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( Λ ‘ 𝑛 ) ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ) |
247 |
244 246
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ) |
248 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐴 ∈ ℂ ) |
249 |
248 98 103 104
|
div12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐴 · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = ( ( Λ ‘ 𝑛 ) · ( 𝐴 / 𝑛 ) ) ) |
250 |
243 247 249
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ ( 𝐴 · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
251 |
4 177 182 250
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐴 · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
252 |
133
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℂ ) |
253 |
9
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
254 |
4 252 253
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐴 · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
255 |
251 254
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
256 |
173 178 174 180 255
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) ≤ ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) ) |
257 |
173 174 26 256
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ≤ ( ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) |
258 |
252 141 33 75
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐴 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) / ( log ‘ 𝑥 ) ) = ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) |
259 |
257 258
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ≤ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) |
260 |
172 33 75
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) ) |
261 |
26
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( log ‘ 𝑥 ) ) |
262 |
29 261
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( log ‘ 𝑥 ) ) = ( log ‘ 𝑥 ) ) |
263 |
262
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( abs ‘ ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
264 |
260 263
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) ) / ( log ‘ 𝑥 ) ) ) |
265 |
129
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝐴 ) |
266 |
8 21 186
|
divge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
267 |
4 9 266
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
268 |
131 26 267
|
divge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) |
269 |
130 132 265 268
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) |
270 |
164 269
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) = ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) |
271 |
259 264 270
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) ) |
272 |
271
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( abs ‘ ( 𝐴 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) / ( log ‘ 𝑥 ) ) ) ) ) |
273 |
128 163 164 171 272
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) / 𝑥 ) − ( 2 · ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑛 ) ) ) ) / ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
274 |
127 273
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) − ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
275 |
73 78 274
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( 2 · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) / ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) ) |
276 |
51 275
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( Λ ‘ 𝑚 ) · ( ( log ‘ 𝑚 ) + ( ψ ‘ ( ( 𝑥 / 𝑛 ) / 𝑚 ) ) ) ) ) / ( 𝑥 · ( log ‘ 𝑥 ) ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |