Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( log ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
4 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
5 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ⊆ ℕ |
6 |
|
simprr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) |
7 |
5 6
|
sselid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℕ ) |
8 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
11 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
12 |
11
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
13 |
12
|
ad2antrl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑛 ∈ ℝ+ ) |
14 |
7
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → 𝑑 ∈ ℝ+ ) |
15 |
13 14
|
rpdivcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( 𝑛 / 𝑑 ) ∈ ℝ+ ) |
16 |
|
relogcl |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℝ+ → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
19 |
18
|
sqcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ∈ ℂ ) |
20 |
10 19
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) ∈ ℂ ) |
21 |
3 4 20
|
dvdsflsumcom |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) ) |
22 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
24 |
23
|
nncnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
25 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℕ ) |
27 |
26
|
nncnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ ) |
28 |
26
|
nnne0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 ) |
29 |
24 27 28
|
divcan3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) / 𝑑 ) = 𝑚 ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( log ‘ 𝑚 ) ) |
31 |
30
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) = ( ( log ‘ 𝑚 ) ↑ 2 ) ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
33 |
32
|
2sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
34 |
21 33
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) / 𝑥 ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) = ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
37 |
36
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) |
38 |
|
eqid |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) = ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) ) / 𝑑 ) |
39 |
38
|
selberglem2 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( μ ‘ 𝑑 ) · ( ( log ‘ 𝑚 ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |
40 |
37 39
|
eqeltri |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( log ‘ ( 𝑛 / 𝑑 ) ) ↑ 2 ) ) / 𝑥 ) − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) |