Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | selconj.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| Assertion | selconj | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | selconj.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜂 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | 
| 3 | an12 | ⊢ ( ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ↔ ( 𝜂 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ) |