Description: If a class is a set, then it is a member of a set. (Contributed by BJ, 3-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sels | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝐴 ∈ 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
2 | snex | ⊢ { 𝐴 } ∈ V | |
3 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
4 | 2 3 | spcev | ⊢ ( 𝐴 ∈ { 𝐴 } → ∃ 𝑥 𝐴 ∈ 𝑥 ) |
5 | 1 4 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝐴 ∈ 𝑥 ) |