Metamath Proof Explorer


Theorem sels

Description: If a class is a set, then it is a member of a set. (Contributed by BJ, 3-Apr-2019)

Ref Expression
Assertion sels ( 𝐴𝑉 → ∃ 𝑥 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
2 snex { 𝐴 } ∈ V
3 eleq2 ( 𝑥 = { 𝐴 } → ( 𝐴𝑥𝐴 ∈ { 𝐴 } ) )
4 2 3 spcev ( 𝐴 ∈ { 𝐴 } → ∃ 𝑥 𝐴𝑥 )
5 1 4 syl ( 𝐴𝑉 → ∃ 𝑥 𝐴𝑥 )