Metamath Proof Explorer


Theorem sels

Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002) Generalize from the proof of elALT . (Revised by BJ, 3-Apr-2019) Avoid ax-sep , ax-nul , ax-pow . (Revised by BTernaryTau, 15-Jan-2025)

Ref Expression
Assertion sels ( 𝐴𝑉 → ∃ 𝑥 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
2 1 exbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦𝑥 ↔ ∃ 𝑥 𝐴𝑥 ) )
3 el 𝑥 𝑦𝑥
4 2 3 vtoclg ( 𝐴𝑉 → ∃ 𝑥 𝐴𝑥 )