Step |
Hyp |
Ref |
Expression |
1 |
|
selvcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvcl.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
4 |
|
selvcl.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
5 |
|
selvcl.e |
⊢ 𝐸 = ( Base ‘ 𝑇 ) |
6 |
|
selvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
selvcl.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
8 |
|
selvcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( algSc ‘ 𝑇 ) = ( algSc ‘ 𝑇 ) |
10 |
|
eqid |
⊢ ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) = ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) |
11 |
1 2
|
mplrcl |
⊢ ( 𝐹 ∈ 𝐵 → 𝐼 ∈ V ) |
12 |
8 11
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
13 |
1 2 3 4 9 10 12 6 7 8
|
selvval |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
14 |
|
eqid |
⊢ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) = ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) |
16 |
12 7
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
17 |
12
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
18 |
3 17 6
|
mplcrngd |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
19 |
4 16 18
|
mplcrngd |
⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
20 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐸 ↑m 𝐼 ) ∈ V ) |
21 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) = ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) |
22 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) = ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) |
23 |
|
eqid |
⊢ ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) = ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) |
24 |
3 4 9 10 21 22 23 14 5 12 6 7
|
selvcllemh |
⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ∈ ( ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) RingHom ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) |
26 |
25 15
|
rhmf |
⊢ ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ∈ ( ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) RingHom ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) : ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) ⟶ ( Base ‘ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) : ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) ⟶ ( Base ‘ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) ) |
28 |
1 2 3 4 9 10 23 22 25 6 7 8
|
selvcllem4 |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑇 ↾s ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ) ) ) |
29 |
27 28
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ∈ ( Base ‘ ( 𝑇 ↑s ( 𝐸 ↑m 𝐼 ) ) ) ) |
30 |
14 5 15 19 20 29
|
pwselbas |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) : ( 𝐸 ↑m 𝐼 ) ⟶ 𝐸 ) |
31 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
32 |
3 4 9 5 31 12 6 7
|
selvcllem5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ∈ ( 𝐸 ↑m 𝐼 ) ) |
33 |
30 32
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑇 ) ‘ ran ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∈ 𝐸 ) |
34 |
13 33
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ 𝐸 ) |