Metamath Proof Explorer


Theorem selvcllem1

Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023)

Ref Expression
Hypotheses selvcllem1.u 𝑈 = ( 𝐼 mPoly 𝑅 )
selvcllem1.t 𝑇 = ( 𝐽 mPoly 𝑈 )
selvcllem1.i ( 𝜑𝐼𝑉 )
selvcllem1.j ( 𝜑𝐽𝑊 )
selvcllem1.r ( 𝜑𝑅 ∈ CRing )
Assertion selvcllem1 ( 𝜑𝑇 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 selvcllem1.u 𝑈 = ( 𝐼 mPoly 𝑅 )
2 selvcllem1.t 𝑇 = ( 𝐽 mPoly 𝑈 )
3 selvcllem1.i ( 𝜑𝐼𝑉 )
4 selvcllem1.j ( 𝜑𝐽𝑊 )
5 selvcllem1.r ( 𝜑𝑅 ∈ CRing )
6 1 mplcrng ( ( 𝐼𝑉𝑅 ∈ CRing ) → 𝑈 ∈ CRing )
7 3 5 6 syl2anc ( 𝜑𝑈 ∈ CRing )
8 2 mplassa ( ( 𝐽𝑊𝑈 ∈ CRing ) → 𝑇 ∈ AssAlg )
9 4 7 8 syl2anc ( 𝜑𝑇 ∈ AssAlg )