Step |
Hyp |
Ref |
Expression |
1 |
|
selvmul.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
selvmul.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
selvmul.1 |
⊢ · = ( .r ‘ 𝑃 ) |
4 |
|
selvmul.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
5 |
|
selvmul.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
6 |
|
selvmul.2 |
⊢ ∙ = ( .r ‘ 𝑇 ) |
7 |
|
selvmul.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
selvmul.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
9 |
|
selvmul.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
10 |
|
selvmul.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
11 |
|
selvmul.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑇 ) = ( 𝐼 mPoly 𝑇 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) |
14 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) = ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) |
15 |
|
eqid |
⊢ ( algSc ‘ 𝑇 ) = ( algSc ‘ 𝑇 ) |
16 |
|
eqid |
⊢ ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) = ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) |
17 |
7
|
difexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
18 |
7 9
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
19 |
4 5 15 16 17 18 8
|
selvcllem2 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) ) |
20 |
1 12 2 13 3 14 19 10 11
|
rhmcomulmpl |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ ( 𝐹 · 𝐺 ) ) ) = ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ ( 𝐹 · 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
23 |
|
eqid |
⊢ ( 𝐼 eval 𝑇 ) = ( 𝐼 eval 𝑇 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
25 |
4 17 8
|
mplcrngd |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
26 |
5 18 25
|
mplcrngd |
⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) |
28 |
4 5 15 24 27 7 8 9
|
selvcllem5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ∈ ( ( Base ‘ 𝑇 ) ↑m 𝐼 ) ) |
29 |
|
rhmghm |
⊢ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) → ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 GrpHom 𝑇 ) ) |
30 |
|
ghmmhm |
⊢ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 GrpHom 𝑇 ) → ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 MndHom 𝑇 ) ) |
31 |
19 29 30
|
3syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 MndHom 𝑇 ) ) |
32 |
1 12 2 13 31 10
|
mhmcompl |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) ) |
33 |
|
eqidd |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
34 |
32 33
|
jca |
⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) ∧ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
35 |
1 12 2 13 31 11
|
mhmcompl |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) ) |
36 |
|
eqidd |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
37 |
35 36
|
jca |
⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) ∧ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
38 |
23 12 24 13 14 6 7 26 28 34 37
|
evlmulval |
⊢ ( 𝜑 → ( ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑇 ) ) ∧ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∙ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) ) |
39 |
38
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ( .r ‘ ( 𝐼 mPoly 𝑇 ) ) ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∙ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
40 |
22 39
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ ( 𝐹 · 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) = ( ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∙ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
41 |
1 7 8
|
mplcrngd |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
42 |
41
|
crngringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
43 |
2 3 42 10 11
|
ringcld |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
44 |
1 2 4 5 15 16 8 9 43
|
selvval2 |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ ( 𝐹 · 𝐺 ) ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
45 |
1 2 4 5 15 16 8 9 10
|
selvval2 |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
46 |
1 2 4 5 15 16 8 9 11
|
selvval2 |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐺 ) = ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) |
47 |
45 46
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∙ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐺 ) ) = ( ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐹 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ∙ ( ( ( 𝐼 eval 𝑇 ) ‘ ( ( ( algSc ‘ 𝑇 ) ∘ ( algSc ‘ 𝑈 ) ) ∘ 𝐺 ) ) ‘ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝐽 , ( ( 𝐽 mVar 𝑈 ) ‘ 𝑥 ) , ( ( algSc ‘ 𝑇 ) ‘ ( ( ( 𝐼 ∖ 𝐽 ) mVar 𝑅 ) ‘ 𝑥 ) ) ) ) ) ) ) |
48 |
40 44 47
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ ( 𝐹 · 𝐺 ) ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∙ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐺 ) ) ) |