| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-sep | ⊢ ∃ 𝑧 ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 2 |  | bimsc1 | ⊢ ( ( ( 𝜑  →  𝑥  ∈  𝑦 )  ∧  ( 𝑥  ∈  𝑧  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) )  →  ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) | 
						
							| 3 | 2 | ex | ⊢ ( ( 𝜑  →  𝑥  ∈  𝑦 )  →  ( ( 𝑥  ∈  𝑧  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) ) | 
						
							| 4 | 3 | al2imi | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝑦 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) ) | 
						
							| 5 | 4 | eximdv | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝑦 )  →  ( ∃ 𝑧 ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ∃ 𝑧 ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) ) | 
						
							| 6 | 1 5 | mpi | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝑦 )  →  ∃ 𝑧 ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) | 
						
							| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝑦 )  →  ∃ 𝑧 ∀ 𝑥 ( 𝑥  ∈  𝑧  ↔  𝜑 ) ) |