Metamath Proof Explorer


Theorem seq1i

Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypotheses seq1i.1 𝑀 ∈ ℤ
seq1i.2 ( 𝜑 → ( 𝐹𝑀 ) = 𝐴 )
Assertion seq1i ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 seq1i.1 𝑀 ∈ ℤ
2 seq1i.2 ( 𝜑 → ( 𝐹𝑀 ) = 𝐴 )
3 seq1 ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
4 1 3 ax-mp ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 )
5 4 2 eqtrid ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = 𝐴 )