Metamath Proof Explorer


Theorem seqabs

Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqabs.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
seqabs.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
seqabs.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
Assertion seqabs ( 𝜑 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 seqabs.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 seqabs.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
3 seqabs.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺𝑘 ) = ( abs ‘ ( 𝐹𝑘 ) ) )
4 fzfid ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin )
5 4 2 fsumabs ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ) ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹𝑘 ) ) )
6 eqidd ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
7 6 1 2 fsumser ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) )
8 7 fveq2d ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) )
9 abscl ( ( 𝐹𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
10 9 recnd ( ( 𝐹𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹𝑘 ) ) ∈ ℂ )
11 2 10 syl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( abs ‘ ( 𝐹𝑘 ) ) ∈ ℂ )
12 3 1 11 fsumser ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹𝑘 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) )
13 5 8 12 3brtr3d ( 𝜑 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) )