| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqabs.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | seqabs.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 3 |  | seqabs.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 4 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ∈  Fin ) | 
						
							| 5 | 4 2 | fsumabs | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) )  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 7 | 6 1 2 | fsumser | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) )  =  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 9 |  | abscl | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 11 | 2 10 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 12 | 3 1 11 | fsumser | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) | 
						
							| 13 | 5 8 12 | 3brtr3d | ⊢ ( 𝜑  →  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) )  ≤  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) |