| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqcaopr.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
seqcaopr.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 3 |
|
seqcaopr.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 4 |
|
seqcaopr.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
seqcaopr.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 6 |
|
seqcaopr.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
| 7 |
|
seqcaopr.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
| 8 |
1
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 ) |
| 9 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝜑 ) |
| 10 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑐 ∈ 𝑆 ) |
| 11 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑏 ∈ 𝑆 ) |
| 12 |
2
|
caovcomg |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑐 + 𝑏 ) = ( 𝑏 + 𝑐 ) ) |
| 13 |
9 10 11 12
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + 𝑏 ) = ( 𝑏 + 𝑐 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( ( 𝑏 + 𝑐 ) + 𝑑 ) ) |
| 15 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑑 ∈ 𝑆 ) |
| 16 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) |
| 17 |
9 10 11 15 16
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑐 + 𝑏 ) + 𝑑 ) = ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) |
| 18 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 19 |
9 11 10 15 18
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑏 + 𝑐 ) + 𝑑 ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 20 |
14 17 19
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + ( 𝑏 + 𝑑 ) ) = ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 22 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → 𝑎 ∈ 𝑆 ) |
| 23 |
1
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( 𝑏 + 𝑑 ) ∈ 𝑆 ) |
| 24 |
9 11 15 23
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑏 + 𝑑 ) ∈ 𝑆 ) |
| 25 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ∧ ( 𝑏 + 𝑑 ) ∈ 𝑆 ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) ) |
| 26 |
9 22 10 24 25
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( 𝑎 + ( 𝑐 + ( 𝑏 + 𝑑 ) ) ) ) |
| 27 |
1
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( 𝑐 + 𝑑 ) ∈ 𝑆 ) |
| 28 |
27
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( 𝑐 + 𝑑 ) ∈ 𝑆 ) |
| 29 |
3
|
caovassg |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ∧ ( 𝑐 + 𝑑 ) ∈ 𝑆 ) ) → ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 30 |
9 22 11 28 29
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) = ( 𝑎 + ( 𝑏 + ( 𝑐 + 𝑑 ) ) ) ) |
| 31 |
21 26 30
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ( ( 𝑎 + 𝑐 ) + ( 𝑏 + 𝑑 ) ) = ( ( 𝑎 + 𝑏 ) + ( 𝑐 + 𝑑 ) ) ) |
| 32 |
8 8 31 4 5 6 7
|
seqcaopr2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |