Step |
Hyp |
Ref |
Expression |
1 |
|
seqcaopr2.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqcaopr2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) |
3 |
|
seqcaopr2.3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
4 |
|
seqcaopr2.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
seqcaopr2.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
6 |
|
seqcaopr2.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
7 |
|
seqcaopr2.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
8 |
|
elfzouz |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
|
elfzouz2 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
12 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
14 |
13
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
15 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑥 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) ) |
19 |
18
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
20 |
16 19
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
21 |
14 20
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
22 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
23 |
9 21 22
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ) |
24 |
|
fzofzp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
27 |
26
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
28 |
15 24 27
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
29 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) |
32 |
31
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
33 |
29 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
35 |
14 34
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
36 |
9 35 22
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
37 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
40 |
29 24 39
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
41 |
3
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
42 |
41
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
43 |
42
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
45 |
|
oveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝑥 + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) |
48 |
47
|
oveq1d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
49 |
46 48
|
eqeq12d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
50 |
49
|
2ralbidv |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
51 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝑦 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
53 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
54 |
53
|
oveq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
55 |
52 54
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
56 |
55
|
2ralbidv |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) ) |
57 |
50 56
|
rspc2va |
⊢ ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( 𝑥 𝑄 𝑧 ) + ( 𝑦 𝑄 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
58 |
36 40 44 57
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) ) |
61 |
|
oveq1 |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( 𝑧 + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) |
63 |
60 62
|
eqeq12d |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ) ) |
64 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
68 |
65 67
|
eqeq12d |
⊢ ( 𝑤 = ( 𝐺 ‘ ( 𝑛 + 1 ) ) → ( ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + 𝑤 ) ) ↔ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
69 |
63 68
|
rspc2va |
⊢ ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 𝑤 ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( 𝑧 + 𝑤 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
70 |
23 28 58 69
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
71 |
1 2 4 5 6 7 70
|
seqcaopr3 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |