| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqcaopr2.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | seqcaopr2.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝑄 𝑦 )  ∈  𝑆 ) | 
						
							| 3 |  | seqcaopr2.3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) ) )  →  ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 4 |  | seqcaopr2.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 |  | seqcaopr2.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 6 |  | seqcaopr2.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 7 |  | seqcaopr2.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 8 |  | elfzouz | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 |  | elfzouz2 | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 12 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 14 | 13 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  𝑥  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 15 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝐺 ‘ 𝑘 )  ∈  𝑆  ↔  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) ) | 
						
							| 19 | 18 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 )  ∈  𝑆  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 20 | 16 19 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 21 | 14 20 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 22 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 23 | 9 21 22 | seqcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 24 |  | fzofzp1 | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐺 ‘ 𝑘 )  ∈  𝑆  ↔  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) ) | 
						
							| 27 | 26 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐺 ‘ 𝑘 )  ∈  𝑆  ∧  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 28 | 15 24 27 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 29 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑆  ↔  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) ) | 
						
							| 32 | 31 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑆  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 33 | 29 32 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 35 | 14 34 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 36 | 9 35 22 | seqcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑆  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) ) | 
						
							| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑆  ∧  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 40 | 29 24 39 | syl2an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 41 | 3 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  ∧  ( 𝑧  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) )  →  ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 42 | 41 | ralrimivva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 43 | 42 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( 𝑥 𝑄 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( 𝑥  +  𝑦 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 49 | 46 48 | eqeq12d | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  ↔  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) ) | 
						
							| 50 | 49 | 2ralbidv | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  →  ( ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  ↔  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( 𝑦 𝑄 𝑤 )  =  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 55 | 52 54 | eqeq12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  ↔  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) ) ) | 
						
							| 56 | 55 | 2ralbidv | ⊢ ( 𝑦  =  ( 𝐹 ‘ ( 𝑛  +  1 ) )  →  ( ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) )  ↔  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) ) ) | 
						
							| 57 | 50 56 | rspc2va | ⊢ ( ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  𝑆  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( 𝑥 𝑄 𝑧 )  +  ( 𝑦 𝑄 𝑤 ) )  =  ( ( 𝑥  +  𝑦 ) 𝑄 ( 𝑧  +  𝑤 ) ) )  →  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 58 | 36 40 44 57 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( 𝑧  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝑧  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) ) ) | 
						
							| 61 |  | oveq1 | ⊢ ( 𝑧  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  →  ( 𝑧  +  𝑤 )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( 𝑧  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 ) ) ) | 
						
							| 63 | 60 62 | eqeq12d | ⊢ ( 𝑧  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  →  ( ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) )  ↔  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 ) ) ) ) | 
						
							| 64 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝐺 ‘ ( 𝑛  +  1 ) )  →  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 )  =  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( 𝑤  =  ( 𝐺 ‘ ( 𝑛  +  1 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝐺 ‘ ( 𝑛  +  1 ) )  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( 𝑤  =  ( 𝐺 ‘ ( 𝑛  +  1 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 68 | 65 67 | eqeq12d | ⊢ ( 𝑤  =  ( 𝐺 ‘ ( 𝑛  +  1 ) )  →  ( ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  𝑤 ) )  ↔  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 69 | 63 68 | rspc2va | ⊢ ( ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  ∈  𝑆  ∧  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 )  ∧  ∀ 𝑧  ∈  𝑆 ∀ 𝑤  ∈  𝑆 ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 𝑧 )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 𝑤 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( 𝑧  +  𝑤 ) ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 70 | 23 28 58 69 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 71 | 1 2 4 5 6 7 70 | seqcaopr3 | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) |