Step |
Hyp |
Ref |
Expression |
1 |
|
seqcaopr3.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqcaopr3.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) |
3 |
|
seqcaopr3.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
seqcaopr3.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
5 |
|
seqcaopr3.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) |
6 |
|
seqcaopr3.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
7 |
|
seqcaopr3.7 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
8 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑧 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
14 |
10 13
|
eqeq12d |
⊢ ( 𝑧 = 𝑀 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑧 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑧 = 𝑛 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑧 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) |
25 |
23 24
|
oveq12d |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
26 |
22 25
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
31 |
29 30
|
oveq12d |
⊢ ( 𝑧 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
32 |
28 31
|
eqeq12d |
⊢ ( 𝑧 = 𝑁 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
33 |
32
|
imbi2d |
⊢ ( 𝑧 = 𝑁 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑀 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) |
37 |
35 36
|
oveq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
38 |
34 37
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑀 ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) ) |
39 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
40 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
41 |
3 40
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
42 |
38 39 41
|
rspcdva |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑀 ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
43 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
44 |
3 43
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
45 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑀 ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑀 ) ) |
47 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
48 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
49 |
47 48
|
oveq12d |
⊢ ( 𝑀 ∈ ℤ → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
50 |
44 49
|
syl |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
51 |
42 46 50
|
3eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
52 |
51
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
53 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
54 |
|
elfzouz |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
56 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
60 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
61 |
59 60
|
oveq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
62 |
58 61
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
63 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
64 |
|
fzofzp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
66 |
62 63 65
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐻 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
67 |
66
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
68 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
69 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
70 |
68 69
|
oveq12d |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
71 |
55 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
72 |
7 67 71
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
73 |
57 72
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) ) |
74 |
53 73
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
75 |
74
|
expcom |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
76 |
75
|
a2d |
⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
77 |
15 21 27 33 52 76
|
fzind2 |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
78 |
9 77
|
mpcom |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |