| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqcaopr3.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | seqcaopr3.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝑄 𝑦 )  ∈  𝑆 ) | 
						
							| 3 |  | seqcaopr3.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 4 |  | seqcaopr3.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 5 |  | seqcaopr3.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 6 |  | seqcaopr3.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 7 |  | seqcaopr3.7 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 8 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑧  =  𝑀  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑧  =  𝑀  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑧  =  𝑀  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑧  =  𝑀  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) | 
						
							| 14 | 10 13 | eqeq12d | ⊢ ( 𝑧  =  𝑀  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  ↔  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑧  =  𝑀  →  ( ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑧  =  𝑛  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑧  =  𝑛  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑧  =  𝑛  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 19 | 17 18 | oveq12d | ⊢ ( 𝑧  =  𝑛  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 20 | 16 19 | eqeq12d | ⊢ ( 𝑧  =  𝑛  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  ↔  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑧  =  𝑛  →  ( ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 25 | 23 24 | oveq12d | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 26 | 22 25 | eqeq12d | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  ↔  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( 𝑧  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑧  =  𝑁  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑧  =  𝑁  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑧  =  𝑁  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) | 
						
							| 31 | 29 30 | oveq12d | ⊢ ( 𝑧  =  𝑁  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 32 | 28 31 | eqeq12d | ⊢ ( 𝑧  =  𝑁  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) )  ↔  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( 𝑧  =  𝑁  →  ( ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑧 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑧 ) ) )  ↔  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ 𝑀 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 37 | 35 36 | oveq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 38 | 34 37 | eqeq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐻 ‘ 𝑀 )  =  ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) ) | 
						
							| 39 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 40 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 42 | 38 39 41 | rspcdva | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑀 )  =  ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 43 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 44 | 3 43 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 45 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( 𝐻 ‘ 𝑀 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( 𝐻 ‘ 𝑀 ) ) | 
						
							| 47 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 48 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 49 | 47 48 | oveq12d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 50 | 44 49 | syl | ⊢ ( 𝜑  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 51 | 42 46 50 | 3eqtr4d | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) ) | 
						
							| 53 |  | oveq1 | ⊢ ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 54 |  | elfzouz | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 56 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 61 | 59 60 | oveq12d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 62 | 58 61 | eqeq12d | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐻 ‘ ( 𝑛  +  1 ) )  =  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 63 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 64 |  | fzofzp1 | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 66 | 62 63 65 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐻 ‘ ( 𝑛  +  1 ) )  =  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( ( 𝐹 ‘ ( 𝑛  +  1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 68 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 69 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 70 | 68 69 | oveq12d | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 71 | 55 70 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) 𝑄 ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 72 | 7 67 71 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 73 | 57 72 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐻 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 74 | 53 73 | imbitrrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 75 | 74 | expcom | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝜑  →  ( ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 76 | 75 | a2d | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑛 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) )  →  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 77 | 15 21 27 33 52 76 | fzind2 | ⊢ ( 𝑁  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) ) | 
						
							| 78 | 9 77 | mpcom | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐻 ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) |