Step |
Hyp |
Ref |
Expression |
1 |
|
seqcl.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
seqcl.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
3 |
|
seqcl.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) ) |
6 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
7 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
9 |
5 6 8
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) |
10 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
12 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
15 |
14 2
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
16 |
9 3 1 15
|
seqcl2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝑆 ) |