Step |
Hyp |
Ref |
Expression |
1 |
|
seqcoll.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) |
2 |
|
seqcoll.1b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) |
3 |
|
seqcoll.c |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) |
4 |
|
seqcoll.a |
⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) |
5 |
|
seqcoll.2 |
⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
6 |
|
seqcoll.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
7 |
|
seqcoll.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
seqcoll.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
9 |
|
seqcoll.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
10 |
|
seqcoll.7 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
11 |
|
elfznn |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ℕ ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
13 |
|
eleq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
14 |
|
2fveq3 |
⊢ ( 𝑦 = 1 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑦 = 1 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
17 |
13 16
|
imbi12d |
⊢ ( 𝑦 = 1 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑦 = 1 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) ) |
19 |
|
eleq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
20 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑚 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑦 = 𝑚 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
26 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) |
29 |
25 28
|
imbi12d |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
31 |
|
eleq1 |
⊢ ( 𝑦 = 𝑁 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
32 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑁 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |
34 |
32 33
|
eqeq12d |
⊢ ( 𝑦 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) |
35 |
31 34
|
imbi12d |
⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) |
36 |
35
|
imbi2d |
⊢ ( 𝑦 = 𝑁 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) ) |
37 |
|
isof1o |
⊢ ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
38 |
5 37
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
39 |
|
f1of |
⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
41 |
|
elfzuz2 |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
42 |
6 41
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
43 |
|
eluzfz1 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
45 |
40 44
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝐴 ) |
46 |
7 45
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
47 |
|
eluzle |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
48 |
42 47
|
syl |
⊢ ( 𝜑 → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
49 |
|
fzssz |
⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℤ |
50 |
|
zssre |
⊢ ℤ ⊆ ℝ |
51 |
49 50
|
sstri |
⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ |
52 |
51
|
a1i |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ ) |
53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
54 |
52 53
|
sstrdi |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
55 |
|
eluzelre |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℝ ) |
56 |
55
|
ssriv |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
57 |
7 56
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
58 |
57 53
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
59 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
60 |
42 59
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
61 |
|
leisorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
62 |
5 54 58 44 60 61
|
syl122anc |
⊢ ( 𝜑 → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
63 |
48 62
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
64 |
40 60
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 ) |
65 |
7 64
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
66 |
|
eluzelz |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
67 |
65 66
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
68 |
|
elfz5 |
⊢ ( ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
69 |
46 67 68
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
70 |
63 69
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
72 |
71
|
eleq1d |
⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) |
73 |
72
|
imbi2d |
⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) ) |
74 |
8
|
expcom |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) ) |
75 |
73 74
|
vtoclga |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) |
76 |
70 75
|
mpcom |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) |
77 |
|
eluzelz |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
78 |
46 77
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
79 |
|
peano2zm |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ) |
80 |
78 79
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ) |
81 |
80
|
zred |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℝ ) |
82 |
78
|
zred |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℝ ) |
83 |
67
|
zred |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
84 |
82
|
lem1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ 1 ) ) |
85 |
81 82 83 84 63
|
letrd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
86 |
|
eluz |
⊢ ( ( ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
87 |
80 67 86
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
88 |
85 87
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ) |
89 |
|
fzss2 |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
90 |
88 89
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
91 |
90
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
92 |
|
eluzel2 |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
93 |
46 92
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
94 |
|
elfzm11 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) ) ) |
95 |
93 78 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) ) ) |
96 |
|
simp3 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) → 𝑘 < ( 𝐺 ‘ 1 ) ) |
97 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ∈ ℝ ) |
98 |
57
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ ) |
99 |
|
f1ocnv |
⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
100 |
38 99
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
101 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
102 |
100 101
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
103 |
102
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
104 |
|
elfznn |
⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℕ ) |
105 |
103 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℕ ) |
106 |
105
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ) |
107 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
108 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
109 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
110 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
111 |
|
leisorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
112 |
107 108 109 110 103 111
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
113 |
106 112
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
114 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
115 |
38 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
116 |
113 115
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ≤ 𝑘 ) |
117 |
97 98 116
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 < ( 𝐺 ‘ 1 ) ) |
118 |
117
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 < ( 𝐺 ‘ 1 ) ) ) |
119 |
118
|
con2d |
⊢ ( 𝜑 → ( 𝑘 < ( 𝐺 ‘ 1 ) → ¬ 𝑘 ∈ 𝐴 ) ) |
120 |
96 119
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
121 |
95 120
|
sylbid |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
122 |
121
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ¬ 𝑘 ∈ 𝐴 ) |
123 |
91 122
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) |
124 |
123 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
125 |
1 4 46 76 124
|
seqid |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) = seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ) |
126 |
125
|
fveq1d |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) |
127 |
|
uzid |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) |
128 |
78 127
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) |
129 |
128
|
fvresd |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) |
130 |
|
seq1 |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
131 |
78 130
|
syl |
⊢ ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
132 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ 1 ) ) |
133 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
134 |
132 133
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) |
135 |
134
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
136 |
10
|
expcom |
⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
137 |
135 136
|
vtoclga |
⊢ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) |
138 |
44 137
|
mpcom |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
139 |
131 138
|
eqtr4d |
⊢ ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) ) |
140 |
126 129 139
|
3eqtr3d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) ) |
141 |
|
1z |
⊢ 1 ∈ ℤ |
142 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
143 |
141 142
|
ax-mp |
⊢ ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) |
144 |
140 143
|
eqtr4di |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) |
145 |
144
|
a1d |
⊢ ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
146 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
147 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
148 |
146 147
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
149 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
150 |
149
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ ) |
151 |
|
elfzuz3 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
152 |
151
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
153 |
|
peano2uzr |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) |
154 |
150 152 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) |
155 |
|
elfzuzb |
⊢ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
156 |
148 154 155
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
157 |
156
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
158 |
157
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) |
159 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
160 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) |
161 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
162 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
163 |
162 156
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ 𝐴 ) |
164 |
161 163
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
165 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
166 |
165
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℝ ) |
167 |
166
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 < ( 𝑚 + 1 ) ) |
168 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
169 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
170 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
171 |
168 156 169 170
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
172 |
167 171
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
173 |
|
eluzelz |
⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) |
174 |
164 173
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) |
175 |
162 169
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ) |
176 |
161 175
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
177 |
|
eluzelz |
⊢ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) |
178 |
176 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) |
179 |
|
zltlem1 |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
180 |
174 178 179
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
181 |
172 180
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) |
182 |
|
peano2zm |
⊢ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) |
183 |
178 182
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) |
184 |
|
eluz |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
185 |
174 183 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
186 |
181 185
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
187 |
183
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℝ ) |
188 |
178
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
189 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
190 |
188
|
lem1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
191 |
|
elfzle2 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
192 |
191
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
193 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
194 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ℝ* ) |
195 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
196 |
|
leisorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
197 |
168 193 194 169 195 196
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
198 |
192 197
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
199 |
187 188 189 190 198
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
200 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
201 |
|
eluz |
⊢ ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
202 |
183 200 201
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
203 |
199 202
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
204 |
|
uztrn |
⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
205 |
203 186 204
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
206 |
|
fzss2 |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
207 |
205 206
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
208 |
207
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
209 |
8
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
210 |
208 209
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
211 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) |
212 |
164 210 211
|
seqcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) ∈ 𝑆 ) |
213 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝜑 ) |
214 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ) |
215 |
|
peano2uz |
⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
216 |
164 215
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
217 |
|
uztrn |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ∧ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
218 |
214 216 217
|
syl2anr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
219 |
|
elfzuz3 |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
220 |
|
uztrn |
⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
221 |
203 219 220
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
222 |
|
elfzuzb |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
223 |
218 221 222
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
224 |
149
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑚 ∈ ℤ ) |
225 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
226 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ 𝐴 ) |
227 |
225 226
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
228 |
227
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
229 |
|
btwnnz |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
230 |
229
|
3expib |
⊢ ( 𝑚 ∈ ℤ → ( ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) ) |
231 |
230
|
con2d |
⊢ ( 𝑚 ∈ ℤ → ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ → ¬ ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ) ) |
232 |
224 228 231
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ) |
233 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
234 |
156
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
235 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
236 |
233 234 227 235
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
237 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
238 |
237 226 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
239 |
238
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑚 ) < 𝑘 ) ) |
240 |
174
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) |
241 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
242 |
241 226
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
243 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
244 |
242 243
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ ℤ ) |
245 |
|
zltp1le |
⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝐺 ‘ 𝑚 ) < 𝑘 ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) |
246 |
240 244 245
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑚 ) < 𝑘 ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) |
247 |
236 239 246
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) |
248 |
169
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
249 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
250 |
233 227 248 249
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
251 |
238
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
252 |
178
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) |
253 |
|
zltlem1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
254 |
244 252 253
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
255 |
250 251 254
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
256 |
247 255
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ↔ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) ) |
257 |
232 256
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
258 |
257
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑘 ∈ 𝐴 → ¬ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) ) |
259 |
258
|
con2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
260 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) |
261 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) |
262 |
260 261
|
jca |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
263 |
259 262
|
impel |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ¬ 𝑘 ∈ 𝐴 ) |
264 |
223 263
|
eldifd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) |
265 |
213 264 9
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
266 |
160 164 186 212 265
|
seqid2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
267 |
266
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
268 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) |
269 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
270 |
268 269
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
271 |
270
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
272 |
271 136
|
vtoclga |
⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
273 |
272
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
274 |
273
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
275 |
274
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
276 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑀 ∈ ℤ ) |
277 |
178
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
278 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
279 |
|
npcan |
⊢ ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
280 |
277 278 279
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
281 |
|
uztrn |
⊢ ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
282 |
186 164 281
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
283 |
|
eluzp1p1 |
⊢ ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
284 |
282 283
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
285 |
280 284
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
286 |
|
seqm1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
287 |
276 285 286
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
288 |
267 275 287
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
289 |
|
seqp1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
290 |
148 289
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
291 |
288 290
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) ) |
292 |
159 291
|
syl5ibr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) |
293 |
292
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
294 |
293
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
295 |
158 294
|
syld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
296 |
295
|
expcom |
⊢ ( 𝑚 ∈ ℕ → ( 𝜑 → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
297 |
296
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
298 |
18 24 30 36 145 297
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) |
299 |
12 298
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) |
300 |
6 299
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |