Step |
Hyp |
Ref |
Expression |
1 |
|
seqcoll2.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) |
2 |
|
seqcoll2.1b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) |
3 |
|
seqcoll2.c |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) |
4 |
|
seqcoll2.a |
⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) |
5 |
|
seqcoll2.2 |
⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
6 |
|
seqcoll2.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
7 |
|
seqcoll2.5 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
8 |
|
seqcoll2.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
9 |
|
seqcoll2.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
10 |
|
seqcoll2.8 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
11 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
12 |
|
isof1o |
⊢ ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
14 |
|
f1of |
⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
16 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
17 |
|
ssfi |
⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ Fin ) |
18 |
16 7 17
|
sylancr |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
19 |
|
hasheq0 |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
21 |
20
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 ≠ ∅ ) ) |
22 |
6 21
|
mpbird |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |
23 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
24 |
18 23
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
25 |
|
elnn0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
27 |
26
|
ord |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) = 0 ) ) |
28 |
22 27
|
mt3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
29 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
30 |
28 29
|
eleqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
31 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
33 |
15 32
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 ) |
34 |
7 33
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) ) |
35 |
11 34
|
sselid |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
36 |
|
elfzuz3 |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
37 |
34 36
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
38 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
40 |
39
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
41 |
40 8
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
42 |
35 41 3
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∈ 𝑆 ) |
43 |
|
peano2uz |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
44 |
35 43
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
45 |
|
fzss1 |
⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
47 |
46
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
48 |
|
eluzelre |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
49 |
35 48
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
51 |
|
peano2re |
⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) |
53 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℤ ) |
54 |
53
|
zred |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℝ ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
56 |
50
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ) |
57 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 ) |
58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 ) |
59 |
50 52 55 56 58
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) |
60 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
61 |
|
f1ocnv |
⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
62 |
60 61
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
63 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
65 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ 𝐴 ) |
66 |
64 65
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
67 |
66
|
elfzelzd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
68 |
67
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
69 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
70 |
69
|
nn0red |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
71 |
|
elfzle2 |
⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐴 ) ) |
72 |
66 71
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐴 ) ) |
73 |
68 70 72
|
lensymd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ) |
74 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
75 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
76 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
77 |
74 75 66 76
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
78 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
79 |
60 65 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
80 |
79
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
81 |
77 80
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
82 |
73 81
|
mtbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) |
83 |
82
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝑘 ∈ 𝐴 → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
84 |
59 83
|
mt2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ¬ 𝑘 ∈ 𝐴 ) |
85 |
47 84
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
86 |
85 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
87 |
2 35 37 42 86
|
seqid2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
88 |
7 11
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
89 |
39
|
ssdifd |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
90 |
89
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
91 |
90 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
92 |
1 2 3 4 5 32 88 41 91 10
|
seqcoll |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
93 |
87 92
|
eqtr3d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |