| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqcoll2.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑆 )  →  ( 𝑍  +  𝑘 )  =  𝑘 ) | 
						
							| 2 |  | seqcoll2.1b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑆 )  →  ( 𝑘  +  𝑍 )  =  𝑘 ) | 
						
							| 3 |  | seqcoll2.c | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝑆  ∧  𝑛  ∈  𝑆 ) )  →  ( 𝑘  +  𝑛 )  ∈  𝑆 ) | 
						
							| 4 |  | seqcoll2.a | ⊢ ( 𝜑  →  𝑍  ∈  𝑆 ) | 
						
							| 5 |  | seqcoll2.2 | ⊢ ( 𝜑  →  𝐺  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) | 
						
							| 6 |  | seqcoll2.3 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 7 |  | seqcoll2.5 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 8 |  | seqcoll2.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 9 |  | seqcoll2.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝑍 ) | 
						
							| 10 |  | seqcoll2.8 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 11 |  | fzssuz | ⊢ ( 𝑀 ... 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 12 |  | isof1o | ⊢ ( 𝐺  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 )  →  𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 14 |  | f1of | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | 
						
							| 16 |  | fzfi | ⊢ ( 𝑀 ... 𝑁 )  ∈  Fin | 
						
							| 17 |  | ssfi | ⊢ ( ( ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  𝐴  ⊆  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  Fin ) | 
						
							| 18 | 16 7 17 | sylancr | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 19 |  | hasheq0 | ⊢ ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ 𝐴 )  =  0  ↔  𝐴  =  ∅ ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  =  0  ↔  𝐴  =  ∅ ) ) | 
						
							| 21 | 20 | necon3bbid | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝐴 )  =  0  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 22 | 6 21 | mpbird | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐴 )  =  0 ) | 
						
							| 23 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 24 | 18 23 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 25 |  | elnn0 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ↔  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∨  ( ♯ ‘ 𝐴 )  =  0 ) ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∨  ( ♯ ‘ 𝐴 )  =  0 ) ) | 
						
							| 27 | 26 | ord | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝐴 )  ∈  ℕ  →  ( ♯ ‘ 𝐴 )  =  0 ) ) | 
						
							| 28 | 22 27 | mt3d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 29 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 30 | 28 29 | eleqtrdi | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 31 |  | eluzfz2 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ♯ ‘ 𝐴 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 33 | 15 32 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  𝐴 ) | 
						
							| 34 | 7 33 | sseldd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 35 | 11 34 | sselid | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 36 |  | elfzuz3 | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ( 𝑀 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 34 36 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 38 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  →  ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 40 | 39 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 41 | 40 8 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 42 | 35 41 3 | seqcl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ∈  𝑆 ) | 
						
							| 43 |  | peano2uz | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 44 | 35 43 | syl | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 45 |  | fzss1 | ⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 47 | 46 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 48 |  | eluzelre | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 49 | 35 48 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 51 |  | peano2re | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  ∈  ℝ  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ∈  ℝ ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ∈  ℝ ) | 
						
							| 53 |  | elfzelz | ⊢ ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 54 | 53 | zred | ⊢ ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  →  𝑘  ∈  ℝ ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 56 | 50 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ) | 
						
							| 57 |  | elfzle1 | ⊢ ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ≤  𝑘 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 )  ≤  𝑘 ) | 
						
							| 59 | 50 52 55 56 58 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  𝑘 ) | 
						
							| 60 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 61 |  | f1ocnv | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 63 |  | f1of | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) )  →  ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 65 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 66 | 64 65 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 67 | 66 | elfzelzd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 68 | 67 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 69 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 70 | 69 | nn0red | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 71 |  | elfzle2 | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  →  ( ◡ 𝐺 ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 72 | 66 71 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ◡ 𝐺 ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐴 ) ) | 
						
							| 73 | 68 70 72 | lensymd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ¬  ( ♯ ‘ 𝐴 )  <  ( ◡ 𝐺 ‘ 𝑘 ) ) | 
						
							| 74 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  𝐺  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) | 
						
							| 75 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 76 |  | isorel | ⊢ ( ( 𝐺  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  ∧  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( ( ♯ ‘ 𝐴 )  <  ( ◡ 𝐺 ‘ 𝑘 )  ↔  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 77 | 74 75 66 76 | syl12anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ( ♯ ‘ 𝐴 )  <  ( ◡ 𝐺 ‘ 𝑘 )  ↔  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 78 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  ∧  𝑘  ∈  𝐴 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 79 | 60 65 78 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 80 | 79 | breq2d | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  𝑘 ) ) | 
						
							| 81 | 77 80 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ( ( ♯ ‘ 𝐴 )  <  ( ◡ 𝐺 ‘ 𝑘 )  ↔  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  𝑘 ) ) | 
						
							| 82 | 73 81 | mtbid | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 )  ∧  𝑘  ∈  𝐴 ) )  →  ¬  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  𝑘 ) | 
						
							| 83 | 82 | expr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( 𝑘  ∈  𝐴  →  ¬  ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  <  𝑘 ) ) | 
						
							| 84 | 59 83 | mt2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ¬  𝑘  ∈  𝐴 ) | 
						
							| 85 | 47 84 | eldifd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∖  𝐴 ) ) | 
						
							| 86 | 85 9 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) )  +  1 ) ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝑍 ) | 
						
							| 87 | 2 35 37 42 86 | seqid2 | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 88 | 7 11 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 89 | 39 | ssdifd | ⊢ ( 𝜑  →  ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ∖  𝐴 )  ⊆  ( ( 𝑀 ... 𝑁 )  ∖  𝐴 ) ) | 
						
							| 90 | 89 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ∖  𝐴 ) )  →  𝑘  ∈  ( ( 𝑀 ... 𝑁 )  ∖  𝐴 ) ) | 
						
							| 91 | 90 9 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  ∖  𝐴 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝑍 ) | 
						
							| 92 | 1 2 3 4 5 32 88 41 91 10 | seqcoll | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) )  =  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 93 | 87 92 | eqtr3d | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |