Step |
Hyp |
Ref |
Expression |
1 |
|
seqdistr.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqdistr.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) = ( ( 𝐶 𝑇 𝑥 ) + ( 𝐶 𝑇 𝑦 ) ) ) |
3 |
|
seqdistr.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
seqdistr.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
5 |
|
seqdistr.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) |
7 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) |
8 |
|
ovex |
⊢ ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ∈ V |
9 |
6 7 8
|
fvmpt |
⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) |
10 |
1 9
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐶 𝑇 ( 𝑥 + 𝑦 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 𝑥 ) ) |
12 |
|
ovex |
⊢ ( 𝐶 𝑇 𝑥 ) ∈ V |
13 |
11 7 12
|
fvmpt |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) = ( 𝐶 𝑇 𝑥 ) ) |
14 |
13
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) = ( 𝐶 𝑇 𝑥 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 𝑦 ) ) |
16 |
|
ovex |
⊢ ( 𝐶 𝑇 𝑦 ) ∈ V |
17 |
15 7 16
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) = ( 𝐶 𝑇 𝑦 ) ) |
18 |
17
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) = ( 𝐶 𝑇 𝑦 ) ) |
19 |
14 18
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝐶 𝑇 𝑥 ) + ( 𝐶 𝑇 𝑦 ) ) ) |
20 |
2 10 19
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ 𝑦 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ 𝑥 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
22 |
|
ovex |
⊢ ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ∈ V |
23 |
21 7 22
|
fvmpt |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
24 |
4 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑇 ( 𝐺 ‘ 𝑥 ) ) ) |
25 |
24 5
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
26 |
1 4 3 20 25
|
seqhomo |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
27 |
3 4 1
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ 𝑆 ) |
28 |
|
oveq2 |
⊢ ( 𝑧 = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) → ( 𝐶 𝑇 𝑧 ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
29 |
|
ovex |
⊢ ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ∈ V |
30 |
28 7 29
|
fvmpt |
⊢ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
31 |
27 30
|
syl |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑆 ↦ ( 𝐶 𝑇 𝑧 ) ) ‘ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
32 |
26 31
|
eqtr3d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐶 𝑇 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |