Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑥 + 1 ) ) = ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐹 = 𝐺 → ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) = ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) ) |
3 |
2
|
opeq2d |
⊢ ( 𝐹 = 𝐺 → 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 = 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) |
4 |
3
|
mpoeq3dv |
⊢ ( 𝐹 = 𝐺 → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ) |
5 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
6 |
5
|
opeq2d |
⊢ ( 𝐹 = 𝐺 → 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) |
7 |
|
rdgeq12 |
⊢ ( ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) ∧ 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 = 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝐹 = 𝐺 → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) ) |
9 |
8
|
imaeq1d |
⊢ ( 𝐹 = 𝐺 → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) “ ω ) ) |
10 |
|
df-seq |
⊢ seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
11 |
|
df-seq |
⊢ seq 𝑀 ( + , 𝐺 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐺 ‘ ( 𝑥 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐺 ‘ 𝑀 ) 〉 ) “ ω ) |
12 |
9 10 11
|
3eqtr4g |
⊢ ( 𝐹 = 𝐺 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |