Metamath Proof Explorer


Theorem seqex

Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqex seq 𝑀 ( + , 𝐹 ) ∈ V

Proof

Step Hyp Ref Expression
1 df-seq seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
2 rdgfun Fun rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ )
3 omex ω ∈ V
4 funimaexg ( ( Fun rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ∧ ω ∈ V ) → ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω ) ∈ V )
5 2 3 4 mp2an ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω ) ∈ V
6 1 5 eqeltri seq 𝑀 ( + , 𝐹 ) ∈ V