Step |
Hyp |
Ref |
Expression |
1 |
|
seqf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
seqf.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
seqf.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
4 |
|
seqf.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) ) |
7 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
8 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
9 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
11 |
6 7 10
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) |
12 |
|
peano2uzr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
2 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
14 |
13 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ 𝑍 ) |
15 |
14 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
16 |
11 4 1 2 15
|
seqf2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝑆 ) |