| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqf1o.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
seqf1o.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 3 |
|
seqf1o.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 4 |
|
seqf1o.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
|
seqf1o.5 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) |
| 6 |
|
seqf1olem.5 |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 7 |
|
seqf1olem.6 |
⊢ ( 𝜑 → 𝐺 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐶 ) |
| 8 |
|
seqf1olem.7 |
⊢ 𝐽 = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
| 9 |
|
seqf1olem.8 |
⊢ 𝐾 = ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) |
| 10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ∈ V ) |
| 11 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝑥 ) ∈ V |
| 12 |
|
ovex |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ V |
| 13 |
11 12
|
ifex |
⊢ if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ∈ V ) |
| 15 |
|
iftrue |
⊢ ( 𝑘 < 𝐾 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = 𝑘 ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝑘 < 𝐾 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 17 |
16
|
eqeq2d |
⊢ ( 𝑘 < 𝐾 → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑥 = ( 𝐹 ‘ 𝑘 ) ) |
| 20 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 21 |
20
|
zred |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ℝ ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ℝ ) |
| 23 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 < 𝐾 ) |
| 24 |
22 23
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐾 ≠ 𝑘 ) |
| 25 |
|
f1of |
⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 26 |
6 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 28 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 30 |
28 29
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 31 |
27 30
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 32 |
|
elfzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) ) |
| 35 |
31 34
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) |
| 36 |
35
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) ) ) |
| 37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 38 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) ) |
| 39 |
37 30 38
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) ) |
| 40 |
9
|
eqeq1i |
⊢ ( 𝐾 = 𝑘 ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝑘 ) |
| 41 |
39 40
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝑁 + 1 ) → 𝐾 = 𝑘 ) ) |
| 42 |
36 41
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = 𝑘 ) ) |
| 43 |
42
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐾 ≠ 𝑘 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 44 |
24 43
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 45 |
19 44
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 46 |
19
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑥 ) |
| 47 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 48 |
37 30 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 49 |
46 48
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 50 |
49 23
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 51 |
|
iftrue |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 53 |
52 49
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 54 |
45 53
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) |
| 55 |
54
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 56 |
18 55
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 57 |
|
iffalse |
⊢ ( ¬ 𝑘 < 𝐾 → if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ¬ 𝑘 < 𝐾 → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 59 |
58
|
eqeq2d |
⊢ ( ¬ 𝑘 < 𝐾 → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 61 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 62 |
|
f1ocnv |
⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 63 |
6 62
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 64 |
|
f1of1 |
⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 66 |
|
f1f |
⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 67 |
65 66
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 68 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 69 |
4 68
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 70 |
|
eluzfz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 71 |
69 70
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 72 |
67 71
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 73 |
9 72
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 74 |
73
|
elfzelzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 75 |
74
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 76 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ∈ ℝ ) |
| 77 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ℝ ) |
| 78 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 80 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ¬ 𝑘 < 𝐾 ) |
| 81 |
76 77 80
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ≤ 𝑘 ) |
| 82 |
77
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 < ( 𝑘 + 1 ) ) |
| 83 |
76 77 79 81 82
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 < ( 𝑘 + 1 ) ) |
| 84 |
76 83
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐾 ≠ ( 𝑘 + 1 ) ) |
| 85 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 86 |
|
fzp1elp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 88 |
85 87
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 89 |
|
elfzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 90 |
4 89
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ↔ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) ) |
| 92 |
88 91
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ∨ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) |
| 93 |
92
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ¬ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) ) ) |
| 94 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 95 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) ) |
| 96 |
94 87 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) ) |
| 97 |
9
|
eqeq1i |
⊢ ( 𝐾 = ( 𝑘 + 1 ) ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( 𝑘 + 1 ) ) |
| 98 |
96 97
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑁 + 1 ) → 𝐾 = ( 𝑘 + 1 ) ) ) |
| 99 |
93 98
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ¬ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) → 𝐾 = ( 𝑘 + 1 ) ) ) |
| 100 |
99
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐾 ≠ ( 𝑘 + 1 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 101 |
84 100
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 102 |
61 101
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 103 |
61
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 ) |
| 104 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) ) |
| 105 |
94 87 104
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑥 → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) ) |
| 106 |
103 105
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) = ( 𝑘 + 1 ) ) |
| 107 |
106
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ↔ ( 𝑘 + 1 ) < 𝐾 ) ) |
| 108 |
|
lttr |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑘 < ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) < 𝐾 ) → 𝑘 < 𝐾 ) ) |
| 109 |
77 79 76 108
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 < ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) < 𝐾 ) → 𝑘 < 𝐾 ) ) |
| 110 |
82 109
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 + 1 ) < 𝐾 → 𝑘 < 𝐾 ) ) |
| 111 |
107 110
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → 𝑘 < 𝐾 ) ) |
| 112 |
80 111
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 113 |
|
iffalse |
⊢ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 114 |
112 113
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 115 |
106
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 116 |
77
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 ∈ ℂ ) |
| 117 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 118 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 119 |
116 117 118
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 120 |
114 115 119
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 121 |
102 120
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ 𝑘 < 𝐾 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) |
| 122 |
121
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 123 |
60 122
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ 𝑘 < 𝐾 ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 124 |
56 123
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 125 |
124
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 126 |
51
|
eqeq2d |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 127 |
126
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 128 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 129 |
4 128
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑀 ∈ ℤ ) |
| 131 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 132 |
4 131
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 133 |
132
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑁 ∈ ℤ ) |
| 134 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 135 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 136 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 137 |
28 136
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 138 |
135 137
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 139 |
134 138
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 140 |
139
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ℤ ) |
| 141 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝑀 ≤ 𝑘 ) |
| 142 |
139 141
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑀 ≤ 𝑘 ) |
| 143 |
140
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ℝ ) |
| 144 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐾 ∈ ℝ ) |
| 145 |
132
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 146 |
145
|
zred |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 148 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 149 |
134 148
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 < 𝐾 ) |
| 150 |
|
elfzle2 |
⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝐾 ≤ ( 𝑁 + 1 ) ) |
| 151 |
73 150
|
syl |
⊢ ( 𝜑 → 𝐾 ≤ ( 𝑁 + 1 ) ) |
| 152 |
151
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐾 ≤ ( 𝑁 + 1 ) ) |
| 153 |
143 144 147 149 152
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 < ( 𝑁 + 1 ) ) |
| 154 |
|
zleltp1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) |
| 155 |
140 133 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑘 ≤ 𝑁 ↔ 𝑘 < ( 𝑁 + 1 ) ) ) |
| 156 |
153 155
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 157 |
130 133 140 142 156
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 158 |
149 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 159 |
134
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 160 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 161 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 162 |
160 137 161
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 163 |
158 159 162
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
| 164 |
157 163
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) |
| 165 |
164
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = ( ◡ 𝐹 ‘ 𝑥 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 166 |
127 165
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 167 |
113
|
eqeq2d |
⊢ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 168 |
167
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ↔ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 169 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 170 |
132
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 171 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 172 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 173 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 174 |
28 173
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 175 |
172 174
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 176 |
175
|
elfzelzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 177 |
|
peano2zm |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ ℤ ) |
| 178 |
176 177
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ∈ ℤ ) |
| 179 |
171 178
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 180 |
129
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 181 |
180
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 182 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ∈ ℝ ) |
| 183 |
179
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 184 |
|
elfzle1 |
⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → 𝑀 ≤ 𝐾 ) |
| 185 |
73 184
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 186 |
185
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ≤ 𝐾 ) |
| 187 |
176
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 188 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) |
| 189 |
182 187 188
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 190 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
| 191 |
190
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℤ ) |
| 192 |
191
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 193 |
132
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 195 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 196 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
| 197 |
196
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
| 198 |
194
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 199 |
192 194 195 197 198
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 < ( 𝑁 + 1 ) ) |
| 200 |
192 199
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑁 + 1 ) ≠ 𝑥 ) |
| 201 |
200
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑁 + 1 ) ≠ 𝑥 ) |
| 202 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 203 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 204 |
|
f1fveq |
⊢ ( ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1→ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) = 𝑥 ) ) |
| 205 |
202 203 174 204
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) = ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) = 𝑥 ) ) |
| 206 |
205
|
necon3bid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( 𝑁 + 1 ) ≠ 𝑥 ) ) |
| 207 |
201 206
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 208 |
9
|
neeq1i |
⊢ ( 𝐾 ≠ ( ◡ 𝐹 ‘ 𝑥 ) ↔ ( ◡ 𝐹 ‘ ( 𝑁 + 1 ) ) ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 209 |
207 208
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≠ ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 210 |
209
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝐾 ) |
| 211 |
182 187 189 210
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 212 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 213 |
|
zltlem1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ↔ 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 214 |
212 176 213
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐾 < ( ◡ 𝐹 ‘ 𝑥 ) ↔ 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) |
| 215 |
211 214
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) |
| 216 |
215 171
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐾 ≤ 𝑘 ) |
| 217 |
181 182 183 186 216
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑀 ≤ 𝑘 ) |
| 218 |
|
elfzle2 |
⊢ ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) |
| 219 |
175 218
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) |
| 220 |
193
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑁 ∈ ℝ ) |
| 221 |
|
1re |
⊢ 1 ∈ ℝ |
| 222 |
|
lesubadd |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) |
| 223 |
221 222
|
mp3an2 |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) |
| 224 |
187 220 223
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( 𝑁 + 1 ) ) ) |
| 225 |
219 224
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ≤ 𝑁 ) |
| 226 |
171 225
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ≤ 𝑁 ) |
| 227 |
169 170 179 217 226
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 228 |
182 183 216
|
lensymd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ¬ 𝑘 < 𝐾 ) |
| 229 |
228 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 230 |
171
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 + 1 ) = ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) ) |
| 231 |
176
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 232 |
|
npcan |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 233 |
231 117 232
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 234 |
230 233
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 + 1 ) = ( ◡ 𝐹 ‘ 𝑥 ) ) |
| 235 |
234
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 236 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
| 237 |
236 174 161
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 238 |
229 235 237
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) |
| 239 |
227 238
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ( ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ∧ 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) |
| 240 |
239
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 241 |
168 240
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 242 |
166 241
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 243 |
242
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ) ) |
| 244 |
125 243
|
impbid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑥 = ( 𝐹 ‘ if ( 𝑘 < 𝐾 , 𝑘 , ( 𝑘 + 1 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ∧ 𝑘 = if ( ( ◡ 𝐹 ‘ 𝑥 ) < 𝐾 , ( ◡ 𝐹 ‘ 𝑥 ) , ( ( ◡ 𝐹 ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 245 |
8 10 14 244
|
f1od |
⊢ ( 𝜑 → 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |