| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqf1o.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | seqf1o.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 3 |  | seqf1o.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 4 |  | seqf1o.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 |  | seqf1o.5 | ⊢ ( 𝜑  →  𝐶  ⊆  𝑆 ) | 
						
							| 6 |  | seqf1olem.5 | ⊢ ( 𝜑  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 7 |  | seqf1olem.6 | ⊢ ( 𝜑  →  𝐺 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶 ) | 
						
							| 8 |  | seqf1olem.7 | ⊢ 𝐽  =  ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝐹 ‘ if ( 𝑘  <  𝐾 ,  𝑘 ,  ( 𝑘  +  1 ) ) ) ) | 
						
							| 9 |  | seqf1olem.8 | ⊢ 𝐾  =  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) | 
						
							| 10 |  | seqf1olem.9 | ⊢ ( 𝜑  →  ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  →  ( seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝑔 ) ‘ 𝑁 ) ) ) | 
						
							| 11 | 7 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 12 |  | fzssp1 | ⊢ ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) | 
						
							| 13 |  | fnssres | ⊢ ( ( 𝐺  Fn  ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  Fn  ( 𝑀 ... 𝑁 ) ) | 
						
							| 15 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ∈  Fin ) | 
						
							| 16 |  | fnfi | ⊢ ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  Fn  ( 𝑀 ... 𝑁 )  ∧  ( 𝑀 ... 𝑁 )  ∈  Fin )  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 17 | 14 15 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 18 | 17 | elexd | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∈  V ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 | seqf1olem1 | ⊢ ( 𝜑  →  𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) | 
						
							| 20 |  | f1of | ⊢ ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  →  𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) | 
						
							| 22 |  | fex2 | ⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 )  ∧  ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  ( 𝑀 ... 𝑁 )  ∈  Fin )  →  𝐽  ∈  V ) | 
						
							| 23 | 21 15 15 22 | syl3anc | ⊢ ( 𝜑  →  𝐽  ∈  V ) | 
						
							| 24 | 18 23 | jca | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∈  V  ∧  𝐽  ∈  V ) ) | 
						
							| 25 |  | fssres | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶  ∧  ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) | 
						
							| 26 | 7 12 25 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) | 
						
							| 27 | 19 26 | jca | ⊢ ( 𝜑  →  ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) | 
						
							| 28 |  | f1oeq1 | ⊢ ( 𝑓  =  𝐽  →  ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ↔  𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 29 |  | feq1 | ⊢ ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  →  ( 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶  ↔  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) | 
						
							| 30 | 28 29 | bi2anan9r | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  ↔  ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) | 
						
							| 31 |  | coeq1 | ⊢ ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  →  ( 𝑔  ∘  𝑓 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝑓 ) ) | 
						
							| 32 |  | coeq2 | ⊢ ( 𝑓  =  𝐽  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝑓 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) | 
						
							| 33 | 31 32 | sylan9eq | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( 𝑔  ∘  𝑓 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) | 
						
							| 34 | 33 | seqeq3d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) )  =  seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 37 | 36 | seqeq3d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  seq 𝑀 (  +  ,  𝑔 )  =  seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 38 | 37 | fveq1d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( seq 𝑀 (  +  ,  𝑔 ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) | 
						
							| 39 | 35 38 | eqeq12d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( ( seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝑔 ) ‘ 𝑁 )  ↔  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) | 
						
							| 40 | 30 39 | imbi12d | ⊢ ( ( 𝑔  =  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∧  𝑓  =  𝐽 )  →  ( ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  →  ( seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝑔 ) ‘ 𝑁 ) )  ↔  ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) | 
						
							| 41 | 40 | spc2gv | ⊢ ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∈  V  ∧  𝐽  ∈  V )  →  ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  →  ( seq 𝑀 (  +  ,  ( 𝑔  ∘  𝑓 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝑔 ) ‘ 𝑁 ) )  →  ( ( 𝐽 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 )  ∧  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 )  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) ) ) | 
						
							| 42 | 24 10 27 41 | syl3c | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) | 
						
							| 43 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 45 | 4 44 | seqfveq | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) | 
						
							| 46 | 42 45 | eqtrd | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝜑  →  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 48 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 49 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 50 |  | elfzuz3 | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 52 |  | eluzp1p1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) ) | 
						
							| 54 |  | elfzuz | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 56 |  | f1of | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) )  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 57 | 6 56 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 58 |  | fco | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶  ∧  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ∘  𝐹 ) : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶 ) | 
						
							| 59 | 7 57 58 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 ) : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶 ) | 
						
							| 60 | 59 5 | fssd | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 ) : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝑆 ) | 
						
							| 61 | 60 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 63 | 48 49 53 55 62 | seqsplit | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 64 |  | elfzp12 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 65 | 64 | biimpa | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 66 | 4 65 | sylan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 67 |  | seqeq1 | ⊢ ( 𝐾  =  𝑀  →  seq 𝐾 (  +  ,  ( 𝐺  ∘  𝐹 ) )  =  seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 68 | 67 | eqcomd | ⊢ ( 𝐾  =  𝑀  →  seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) )  =  seq 𝐾 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ) | 
						
							| 69 | 68 | fveq1d | ⊢ ( 𝐾  =  𝑀  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( seq 𝐾 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 ) ) | 
						
							| 70 |  | f1ocnv | ⊢ ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) )  →  ◡ 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 71 |  | f1of | ⊢ ( ◡ 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) )  →  ◡ 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 72 | 6 70 71 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 73 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 74 |  | eluzfz2 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 75 | 4 73 74 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 76 | 72 75 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 77 | 9 76 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 78 |  | elfzelz | ⊢ ( 𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 79 |  | seq1 | ⊢ ( 𝐾  ∈  ℤ  →  ( seq 𝐾 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) | 
						
							| 80 | 77 78 79 | 3syl | ⊢ ( 𝜑  →  ( seq 𝐾 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) | 
						
							| 81 | 69 80 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  𝐾  =  𝑀 ) | 
						
							| 84 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 85 | 4 84 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 87 | 83 86 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  𝐾  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 88 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 89 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐶  ⊆  𝑆 ) | 
						
							| 90 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺  ∘  𝐹 ) : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐶 ) | 
						
							| 91 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 92 |  | peano2uz | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 93 |  | fzss1 | ⊢ ( ( 𝐾  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝐾  +  1 ) ... ( 𝑁  +  1 ) )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 94 | 55 92 93 | 3syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐾  +  1 ) ... ( 𝑁  +  1 ) )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 95 | 48 88 49 53 89 90 91 94 | seqf1olem2a | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) ) | 
						
							| 96 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  1  ∈  ℤ ) | 
						
							| 97 |  | elfzuz | ⊢ ( 𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 98 |  | fzss1 | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾 ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 99 | 77 97 98 | 3syl | ⊢ ( 𝜑  →  ( 𝐾 ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 100 | 99 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑥  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 101 | 21 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 102 | 100 101 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 103 | 102 | fvresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 104 |  | breq1 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑘  <  𝐾  ↔  𝑥  <  𝐾 ) ) | 
						
							| 105 |  | id | ⊢ ( 𝑘  =  𝑥  →  𝑘  =  𝑥 ) | 
						
							| 106 |  | oveq1 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑘  +  1 )  =  ( 𝑥  +  1 ) ) | 
						
							| 107 | 104 105 106 | ifbieq12d | ⊢ ( 𝑘  =  𝑥  →  if ( 𝑘  <  𝐾 ,  𝑘 ,  ( 𝑘  +  1 ) )  =  if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) | 
						
							| 108 | 107 | fveq2d | ⊢ ( 𝑘  =  𝑥  →  ( 𝐹 ‘ if ( 𝑘  <  𝐾 ,  𝑘 ,  ( 𝑘  +  1 ) ) )  =  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) ) | 
						
							| 109 |  | fvex | ⊢ ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  ∈  V | 
						
							| 110 | 108 8 109 | fvmpt | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) ) | 
						
							| 111 | 100 110 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) ) | 
						
							| 112 | 77 78 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 113 | 112 | zred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  𝐾  ∈  ℝ ) | 
						
							| 115 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 𝐾 ... 𝑁 )  →  𝑥  ∈  ℤ ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 117 | 116 | zred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 118 |  | elfzle1 | ⊢ ( 𝑥  ∈  ( 𝐾 ... 𝑁 )  →  𝐾  ≤  𝑥 ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  𝐾  ≤  𝑥 ) | 
						
							| 120 | 114 117 119 | lensymd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ¬  𝑥  <  𝐾 ) | 
						
							| 121 |  | iffalse | ⊢ ( ¬  𝑥  <  𝐾  →  if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) )  =  ( 𝑥  +  1 ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( ¬  𝑥  <  𝐾  →  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 123 | 120 122 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 124 | 111 123 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 125 | 124 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 126 | 103 125 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 127 |  | fvco3 | ⊢ ( ( 𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 128 | 21 127 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 129 | 100 128 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 130 |  | fzp1elp1 | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝑥  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 131 | 100 130 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝑥  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 132 |  | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  ( 𝑥  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑥  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 133 | 57 132 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑥  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑥  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 134 | 131 133 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑥  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 135 | 126 129 134 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 136 | 135 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 137 | 51 96 136 | seqshft2 | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 138 |  | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) | 
						
							| 139 | 57 77 138 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) ) ) | 
						
							| 140 | 9 | fveq2i | ⊢ ( 𝐹 ‘ 𝐾 )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 141 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 142 | 6 75 141 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 143 | 140 142 | eqtrid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐾 )  =  ( 𝑁  +  1 ) ) | 
						
							| 144 | 143 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝐾 ) )  =  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 145 | 139 144 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  =  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) | 
						
							| 147 | 137 146 | oveq12d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) ) | 
						
							| 148 | 95 147 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 149 | 87 148 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 150 | 83 | seqeq1d | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) )  =  seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ) | 
						
							| 151 | 150 | fveq1d | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) | 
						
							| 152 | 151 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 153 | 82 149 152 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  =  𝑀 )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 154 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 155 | 4 154 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 156 |  | elfzuz | ⊢ ( 𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝐾  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 157 |  | eluzp1m1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( 𝐾  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 158 | 155 156 157 | syl2an | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝐾  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 159 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 160 | 4 159 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 161 | 160 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 162 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 163 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 164 | 161 162 163 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 165 |  | peano2zm | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 166 | 77 78 165 | 3syl | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 167 |  | elfzuz3 | ⊢ ( 𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 168 | 77 167 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 169 | 112 | zcnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 170 |  | npcan | ⊢ ( ( 𝐾  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 171 | 169 162 170 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( ( 𝐾  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 173 | 168 172 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( ( 𝐾  −  1 )  +  1 ) ) ) | 
						
							| 174 |  | eluzp1m1 | ⊢ ( ( ( 𝐾  −  1 )  ∈  ℤ  ∧  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( ( 𝐾  −  1 )  +  1 ) ) )  →  ( ( 𝑁  +  1 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) ) ) | 
						
							| 175 | 166 173 174 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) ) ) | 
						
							| 176 | 164 175 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) ) ) | 
						
							| 177 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) )  →  ( 𝑀 ... ( 𝐾  −  1 ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 178 | 176 177 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝐾  −  1 ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 179 | 178 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  𝑥  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 180 | 179 101 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐽 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 181 | 180 | fvresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 182 | 179 110 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) ) | 
						
							| 183 |  | elfzm11 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  𝑀  ≤  𝑥  ∧  𝑥  <  𝐾 ) ) ) | 
						
							| 184 | 155 112 183 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  𝑀  ≤  𝑥  ∧  𝑥  <  𝐾 ) ) ) | 
						
							| 185 | 184 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝑥  ∈  ℤ  ∧  𝑀  ≤  𝑥  ∧  𝑥  <  𝐾 ) ) | 
						
							| 186 | 185 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  𝑥  <  𝐾 ) | 
						
							| 187 |  | iftrue | ⊢ ( 𝑥  <  𝐾  →  if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) )  =  𝑥 ) | 
						
							| 188 | 187 | fveq2d | ⊢ ( 𝑥  <  𝐾  →  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 189 | 186 188 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 190 | 182 189 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 191 | 190 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 192 | 181 191 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 193 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) ) ) | 
						
							| 194 |  | fzss2 | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐾  −  1 ) )  →  ( 𝑀 ... ( 𝐾  −  1 ) )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 195 | 176 193 194 | 3syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝐾  −  1 ) )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 196 | 195 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 197 |  | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 198 | 57 197 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 199 | 196 198 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 200 | 179 128 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 201 | 192 199 200 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 ) ) | 
						
							| 202 | 201 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 ) ) | 
						
							| 203 | 158 202 | seqfveq | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  =  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) ) ) | 
						
							| 204 |  | fzp1ss | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 205 | 4 154 204 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 206 | 205 | sselda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝐾  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 207 | 206 148 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 208 | 203 207 | oveq12d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 209 | 196 61 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 210 | 209 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 211 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 212 | 158 210 211 | seqcl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆 ) | 
						
							| 213 | 59 77 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  ∈  𝐶 ) | 
						
							| 214 | 5 213 | sseldd | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  ∈  𝑆 ) | 
						
							| 215 | 214 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  ∈  𝑆 ) | 
						
							| 216 | 94 | sselda | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  𝑥  ∈  ( ( 𝐾  +  1 ) ... ( 𝑁  +  1 ) ) )  →  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 217 | 216 62 | syldan | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  ∧  𝑥  ∈  ( ( 𝐾  +  1 ) ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 218 | 53 217 48 | seqcl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) | 
						
							| 219 | 206 218 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) | 
						
							| 220 | 212 215 219 | 3jca | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆  ∧  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  ∈  𝑆  ∧  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) ) | 
						
							| 221 | 3 | caovassg | ⊢ ( ( 𝜑  ∧  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆  ∧  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  ∈  𝑆  ∧  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) )  →  ( ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 222 | 220 221 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 223 | 7 5 | fssd | ⊢ ( 𝜑  →  𝐺 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝑆 ) | 
						
							| 224 |  | fssres | ⊢ ( ( 𝐺 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝑆  ∧  ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 225 | 223 12 224 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 226 |  | fco | ⊢ ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆  ∧  𝐽 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 227 | 225 21 226 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝑆 ) | 
						
							| 228 | 227 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 229 | 179 228 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 230 | 229 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 231 | 158 230 211 | seqcl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆 ) | 
						
							| 232 |  | elfzuz3 | ⊢ ( 𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 233 | 232 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 234 | 100 228 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 235 | 234 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 236 | 233 235 211 | seqcl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  ∈  𝑆 ) | 
						
							| 237 | 223 75 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) | 
						
							| 238 | 237 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) | 
						
							| 239 | 231 236 238 | 3jca | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆  ∧  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) ) | 
						
							| 240 | 3 | caovassg | ⊢ ( ( 𝜑  ∧  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  ∈  𝑆  ∧  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐺 ‘ ( 𝑁  +  1 ) )  ∈  𝑆 ) )  →  ( ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 241 | 239 240 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 242 | 208 222 241 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 243 |  | seqm1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) ) | 
						
							| 244 | 155 156 243 | syl2an | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) ) ) | 
						
							| 245 | 244 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝐾  −  1 ) )  +  ( ( 𝐺  ∘  𝐹 ) ‘ 𝐾 ) )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 246 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 247 |  | elfzelz | ⊢ ( 𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝐾  ∈  ℤ ) | 
						
							| 248 | 247 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 249 | 248 | zcnd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 250 | 249 162 170 | sylancl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 251 | 250 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ℤ≥ ‘ ( ( 𝐾  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 252 | 233 251 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝐾  −  1 )  +  1 ) ) ) | 
						
							| 253 | 228 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 254 | 211 246 252 158 253 | seqsplit | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq ( ( 𝐾  −  1 )  +  1 ) (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) ) | 
						
							| 255 | 250 | seqeq1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  seq ( ( 𝐾  −  1 )  +  1 ) (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) )  =  seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ) | 
						
							| 256 | 255 | fveq1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq ( ( 𝐾  −  1 )  +  1 ) (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) | 
						
							| 257 | 256 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq ( ( 𝐾  −  1 )  +  1 ) (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) ) | 
						
							| 258 | 254 257 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) ) | 
						
							| 259 | 258 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ ( 𝐾  −  1 ) )  +  ( seq 𝐾 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 260 | 242 245 259 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 261 | 153 260 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 262 | 66 261 | syldan | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝐾 )  +  ( seq ( 𝐾  +  1 ) (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 263 | 63 262 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 264 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 265 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝑁 )  +  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 266 | 264 265 | syl | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝑁 )  +  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 267 | 110 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) ) ) | 
						
							| 268 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  𝑥  ∈  ℤ ) | 
						
							| 269 | 268 | zred | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  𝑥  ∈  ℝ ) | 
						
							| 270 | 269 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 271 | 160 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 272 | 271 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 273 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 274 | 272 273 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 275 |  | elfzle2 | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  𝑥  ≤  𝑁 ) | 
						
							| 276 | 275 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  ≤  𝑁 ) | 
						
							| 277 | 272 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 278 | 270 272 274 276 277 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  <  ( 𝑁  +  1 ) ) | 
						
							| 279 | 278 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  <  ( 𝑁  +  1 ) ) | 
						
							| 280 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  =  ( 𝑁  +  1 ) ) | 
						
							| 281 | 279 280 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  <  𝐾 ) | 
						
							| 282 | 281 188 | syl | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ if ( 𝑥  <  𝐾 ,  𝑥 ,  ( 𝑥  +  1 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 283 | 267 282 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐽 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 284 | 283 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 285 | 269 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 286 | 285 281 | gtned | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ≠  𝑥 ) | 
						
							| 287 | 57 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 288 |  | fzelp1 | ⊢ ( 𝑥  ∈  ( 𝑀 ... 𝑁 )  →  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 289 | 288 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 290 | 287 289 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 291 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 292 |  | elfzp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  ∨  ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 293 | 291 292 | syl | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  ∨  ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 294 | 290 293 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  ∨  ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 295 | 294 | ord | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ¬  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 296 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 297 |  | f1ocnvfv | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) )  =  𝑥 ) ) | 
						
							| 298 | 296 289 297 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) )  =  𝑥 ) ) | 
						
							| 299 | 9 | eqeq1i | ⊢ ( 𝐾  =  𝑥  ↔  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) )  =  𝑥 ) | 
						
							| 300 | 298 299 | imbitrrdi | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝑁  +  1 )  →  𝐾  =  𝑥 ) ) | 
						
							| 301 | 295 300 | syld | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ¬  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  →  𝐾  =  𝑥 ) ) | 
						
							| 302 | 301 | necon1ad | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐾  ≠  𝑥  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 303 | 286 302 | mpd | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 304 | 303 | fvresd | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 305 | 284 304 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 306 | 57 288 197 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 307 | 306 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 308 | 128 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 )  =  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) ) ‘ ( 𝐽 ‘ 𝑥 ) ) ) | 
						
							| 309 | 305 307 308 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ‘ 𝑥 ) ) | 
						
							| 310 | 264 309 | seqfveq | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 ) ) | 
						
							| 311 |  | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ ( 𝑀 ... ( 𝑁  +  1 ) )  ∧  ( 𝑁  +  1 )  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 312 | 57 75 311 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 313 | 312 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 314 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  𝐾  =  ( 𝑁  +  1 ) ) | 
						
							| 315 | 9 314 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 316 | 315 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 317 | 142 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 318 | 316 317 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( 𝐹 ‘ ( 𝑁  +  1 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 319 | 318 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 320 | 313 319 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 321 | 310 320 | oveq12d | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ 𝑁 )  +  ( ( 𝐺  ∘  𝐹 ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 322 | 266 321 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  =  ( 𝑁  +  1 ) )  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 323 |  | elfzp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↔  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∨  𝐾  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 324 | 4 323 | syl | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  ↔  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∨  𝐾  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 325 | 77 324 | mpbid | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ∨  𝐾  =  ( 𝑁  +  1 ) ) ) | 
						
							| 326 | 263 322 325 | mpjaodan | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  ( ( 𝐺  ↾  ( 𝑀 ... 𝑁 ) )  ∘  𝐽 ) ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 327 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 328 | 4 327 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 329 | 47 326 328 | 3eqtr4d | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐺  ∘  𝐹 ) ) ‘ ( 𝑁  +  1 ) )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑁  +  1 ) ) ) |