| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqf1o.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | seqf1o.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 3 |  | seqf1o.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 4 |  | seqf1o.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 |  | seqf1o.5 | ⊢ ( 𝜑  →  𝐶  ⊆  𝑆 ) | 
						
							| 6 |  | seqf1olem2a.1 | ⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐶 ) | 
						
							| 7 |  | seqf1olem2a.3 | ⊢ ( 𝜑  →  𝐾  ∈  𝐴 ) | 
						
							| 8 |  | seqf1olem2a.4 | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ⊆  𝐴 ) | 
						
							| 9 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑚  =  𝑀  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) ) ) | 
						
							| 13 | 11 | oveq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑚  =  𝑀  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  ↔  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 15 | 14 | imbi2d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) ) | 
						
							| 18 | 16 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 19 | 17 18 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  ↔  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 23 | 21 | oveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 24 | 22 23 | eqeq12d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  ↔  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑚  =  𝑁  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 28 | 26 | oveq1d | ⊢ ( 𝑚  =  𝑁  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 29 | 27 28 | eqeq12d | ⊢ ( 𝑚  =  𝑁  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) )  ↔  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑚 )  +  ( 𝐺 ‘ 𝐾 ) ) )  ↔  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 31 | 6 7 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐾 )  ∈  𝐶 ) | 
						
							| 32 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 33 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 34 | 4 32 33 | 3syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 35 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 36 | 4 35 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 37 | 8 36 | sseldd | ⊢ ( 𝜑  →  𝑀  ∈  𝐴 ) | 
						
							| 38 | 6 37 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  ∈  𝐶 ) | 
						
							| 39 | 34 38 | eqeltrd | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  ∈  𝐶 ) | 
						
							| 40 | 2 31 39 | caovcomd | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑀 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 43 |  | elfzouz | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 45 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 48 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 49 | 5 31 | sseldd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐾 )  ∈  𝑆 ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝐾 )  ∈  𝑆 ) | 
						
							| 51 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐶  ⊆  𝑆 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐶  ⊆  𝑆 ) | 
						
							| 53 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐺 : 𝐴 ⟶ 𝐶 ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐺 : 𝐴 ⟶ 𝐶 ) | 
						
							| 55 |  | elfzouz2 | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 57 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 ... 𝑛 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 59 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 ... 𝑁 )  ⊆  𝐴 ) | 
						
							| 60 | 58 59 | sstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 ... 𝑛 )  ⊆  𝐴 ) | 
						
							| 61 | 60 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 62 | 54 61 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 63 | 52 62 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑥  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 64 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 65 | 44 63 64 | seqcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 66 |  | fzofzp1 | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 68 | 59 67 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  𝐴 ) | 
						
							| 69 | 53 68 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝐶 ) | 
						
							| 70 | 51 69 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 71 | 48 50 65 70 | caovassd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 72 | 47 71 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 73 | 48 65 70 50 | caovassd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( ( 𝐺 ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 74 | 46 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) | 
						
							| 75 | 48 65 50 70 | caovassd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( ( 𝐺 ‘ 𝐾 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 76 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 77 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝐾 )  ∈  𝐶 ) | 
						
							| 78 | 76 69 77 | caovcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( 𝐺 ‘ 𝐾 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( ( 𝐺 ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( ( 𝐺 ‘ 𝐾 )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 80 | 75 79 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( ( 𝐺 ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 81 | 73 74 80 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 82 | 72 81 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) )  ↔  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  +  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 83 | 42 82 | imbitrrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 84 | 83 | expcom | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝜑  →  ( ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) )  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 85 | 84 | a2d | ⊢ ( 𝑛  ∈  ( 𝑀 ..^ 𝑁 )  →  ( ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  +  ( 𝐺 ‘ 𝐾 ) ) )  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ ( 𝑛  +  1 ) )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) ) | 
						
							| 86 | 15 20 25 30 41 85 | fzind2 | ⊢ ( 𝑁  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ 𝐾 ) ) ) ) | 
						
							| 87 | 10 86 | mpcom | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐾 )  +  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) )  =  ( ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 )  +  ( 𝐺 ‘ 𝐾 ) ) ) |