Step |
Hyp |
Ref |
Expression |
1 |
|
seqcl2.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) |
2 |
|
seqcl2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) |
3 |
|
seqf2.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
seqf2.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
seqf2.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
6 |
|
seqfn |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) |
9 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
elfzuz |
⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) → 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
12 |
11 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
14 |
8 9 10 13
|
seqcl2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) |
15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) |
16 |
|
ffnfv |
⊢ ( seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) ) |
17 |
7 15 16
|
sylanbrc |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ) |
18 |
3
|
feq2i |
⊢ ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝐶 ) |