Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq2.1 |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
seqfveq2.2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
3 |
|
seqfeq2.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
4 |
|
eluzel2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
5 |
|
seqfn |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
6 |
1 4 5
|
3syl |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
7 |
|
uzss |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
fnssres |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
11 |
|
eluzelz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) |
12 |
|
seqfn |
⊢ ( 𝐾 ∈ ℤ → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
13 |
1 11 12
|
3syl |
⊢ ( 𝜑 → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝐾 ) ) |
14 |
|
fvres |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) |
16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
19 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
20 |
19 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
22 |
16 17 18 21
|
seqfveq2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) |
23 |
15 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) |
24 |
10 13 23
|
eqfnfvd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = seq 𝐾 ( + , 𝐺 ) ) |