Metamath Proof Explorer


Theorem seqfeq2

Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq2.1 ( 𝜑𝐾 ∈ ( ℤ𝑀 ) )
seqfveq2.2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺𝐾 ) )
seqfeq2.4 ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
Assertion seqfeq2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) = seq 𝐾 ( + , 𝐺 ) )

Proof

Step Hyp Ref Expression
1 seqfveq2.1 ( 𝜑𝐾 ∈ ( ℤ𝑀 ) )
2 seqfveq2.2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺𝐾 ) )
3 seqfeq2.4 ( ( 𝜑𝑘 ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
4 eluzel2 ( 𝐾 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
5 seqfn ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ𝑀 ) )
6 1 4 5 3syl ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ𝑀 ) )
7 uzss ( 𝐾 ∈ ( ℤ𝑀 ) → ( ℤ𝐾 ) ⊆ ( ℤ𝑀 ) )
8 1 7 syl ( 𝜑 → ( ℤ𝐾 ) ⊆ ( ℤ𝑀 ) )
9 fnssres ( ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ𝑀 ) ∧ ( ℤ𝐾 ) ⊆ ( ℤ𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) Fn ( ℤ𝐾 ) )
10 6 8 9 syl2anc ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) Fn ( ℤ𝐾 ) )
11 eluzelz ( 𝐾 ∈ ( ℤ𝑀 ) → 𝐾 ∈ ℤ )
12 seqfn ( 𝐾 ∈ ℤ → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ𝐾 ) )
13 1 11 12 3syl ( 𝜑 → seq 𝐾 ( + , 𝐺 ) Fn ( ℤ𝐾 ) )
14 fvres ( 𝑥 ∈ ( ℤ𝐾 ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) )
15 14 adantl ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) )
16 1 adantr ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → 𝐾 ∈ ( ℤ𝑀 ) )
17 2 adantr ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺𝐾 ) )
18 simpr ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → 𝑥 ∈ ( ℤ𝐾 ) )
19 elfzuz ( 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ ‘ ( 𝐾 + 1 ) ) )
20 19 3 sylan2 ( ( 𝜑𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
21 20 adantlr ( ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑥 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
22 16 17 18 21 seqfveq2 ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) )
23 15 22 eqtrd ( ( 𝜑𝑥 ∈ ( ℤ𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) )
24 10 13 23 eqfnfvd ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝐾 ) ) = seq 𝐾 ( + , 𝐺 ) )